Results:
Tag: inland navigation
Clear
  • Improving Container Shipment Analysis

    Abstract: US Army Corps of Engineers (USACE) deep-draft navigation economic analyses use assumptions about the sensitivity of vessel operations to channel modification to estimate national economic development benefits. The complexity and proprietary nature of carrier deployment decisions and loading practices adds uncertainty to USACE navigation studies. This report attempts to provide an overview of containership deployment and loading practices as it relates to USACE navigation studies to improve the quality of deep-draft economics. The report relies on trade data, vessel order books, and carrier interviews to study the impact of channel modification on vessel loading and deployment. The report makes recommendations for developing deployment and loading inputs for future economic evaluations.
  • Vessel Speed Analysis before and after Dredging near Missouri River Mile 282 in November 2020

    Abstract: The purpose of this Coastal and Hydraulics Engineering Technical Note (CHETN) is to present information on vessel traffic before, during, and after a dredging event around river mile 282 of the Missouri River in November 2020 along with contextual information about tonnage and commodities that utilize this navigation project.
  • AIS Data Case Study: Evaluating Reception of AIS Position Reports on the Missouri River by LOMA AIS Sites in April and August 2020

    Abstract: This Coastal and Hydraulics Engineering Technical Note (CHETN) describes a method for evaluating the received coverage from Automatic Identification System (AIS) shoreside sites along the Missouri River managed by the US Army Corps of Engineers (USACE) Lock Operations Management Application (LOMA), and presents the results of that analysis. The purpose is to identify AIS coverage gaps in the current system. Reception of AIS transmissions between shore-based transceivers and vessels is generally line-of-sight between the vessel and the AIS site antenna. However, signal reception may be affected by factors such as the distance and terrain between the vessel and the transceiver site, quality of the transceiver installation, state of the equipment either aboard the vessel or at the shore transceiver station, and atmospheric phenomena. Quantifying coverage gaps along the inland waterways system can inform research that uses AIS data, provide information on the performance of the AIS network, and provide guidance for efforts to address coverage gaps to improve navigation safety. In autumn 2020, severe shoaling was occurring on the Missouri River. As the shoals were identified, the Kansas City District requested the LOMA system transmit AIS Aid to Navigation (AtoN) to mark the shoals in several critical areas. However, vessel pilots sometimes reported that they were not receiving the AIS AtoN being transmitted. At the request of the Kansas City District, the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory (ERDC-CHL), conducted a coverage analysis using data collected from the LOMA AIS transceivers in the area to determine if there were coverage issues and their extent and to aid in determining the best means of addressing any coverage gaps.
  • Houston Ship Channel Expansion Improvement Project – Navigation Channel Improvement Study: Ship Simulation Results

    Abstract: In 2020, the US Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory, provided technical oversight during a navigation study to assist the Galveston District evaluation of different channel widening alternatives for larger ships transiting the Houston Ship Channel (HSC), Texas. The widening proposals encompassed several areas of the HSC including the Bay Section, the Bayport Ship Channel, Barbours Cut Channel, and the Bayou Section. The study was performed at the San Jacinto College Maritime Technology and Training Center (SJCMTTC) Ship/Tug Simulator (STS) Facility in La Porte, TX. The SJCMTTC STS is a real-time simulator; therefore, events on the simulator happen at the same time rate as real life. A variety of environmental forces act upon the ship during the simulation transit. These include currents, wind, waves, bathymetry, and ship-to-ship interaction. Online simulations of the project were conducted at SJCMTTC over a 3-week period – May through June 2020. Several mariners including Houston Pilots and G&H tugboat Captains participated in the testing and validation exercises. ERDC oversight was performed remotely because of the COVID-19 pandemic. Results in the form of engineering observations, track plots, and pilot interviews were reviewed to develop final conclusions and recommendations regarding the final design.
  • Houston Ship Channel Expansion Channel Improvement Project (ECIP) Numerical Modeling Report: BABUS Cell and Bird Island Analysis

    Abstract: The Houston Ship Channel (HSC) is one of the busiest deep-draft navigation channels in the United States and must be able to accommodate increasing vessel sizes. The US Army Engineer District, Galveston (SWG), requested the Engineer Research and Development Center, Coastal and Hydraulics Laboratory, perform hydrodynamic and sediment modeling of proposed modifications in Galveston and Trinity Bays and along the HSC. The modeling results are necessary to provide data for hydrodynamic, salinity, and sediment transport analysis. SWG provided three project alternatives that include closing Rollover Pass, Bay Aquatic Beneficial Use System cells, Bird Islands, and HSC modifications. These alternatives and a Base (existing condition) will be simulated for present (2029) and future (2079) conditions. The results of these alternatives/conditions as compared to the Base are presented in this report. The model shows that the mean salinity varies by 2–3 ppt due to the HSC channel modifications and by approximately 5 ppt in the area of East Bay due to the closure of Rollover Pass. The tidal prism increases by 2.5% to 5% in the alternatives. The tidal amplitudes change by less than 0.01 m. The residual velocity vectors vary in and around areas where project modifications are made.
  • 2017 Hurricane Season: Recommendations for a Resilient Path Forward for the Marine Transportation System

    Abstract: In October 2017, the Coordinating Board of the US Committee on the Marine Transportation System (MTS) tasked the MTS Resilience Integrated Action Team (RIAT) to identify the impacts, best practices, and lessons learned by federal agencies during the 2017 hurricane season. The RIAT studied the resiliency of the MTS by targeting its ability to prepare, respond, recover, and adapt to and from disruptions by turning to the collective knowledge of its members. Utilizing interagency data calls and a targeted workshop, the RIAT gauged the disruptive effect of the 2017 hurricane season and how Hurricanes Harvey, Irma, and Maria affected the operating status of at least 45 US ports across three major regions. This report identifies recommendations to better understand how the MTS can prepare for future storms and identifies activities by federal agencies that are contributing towards resilience. Such actions include hosting early pre-storm preparedness meetings, prioritizing communication between agencies and information distribution, and maintaining or updating existing response plans. Recommendations also target challenges experienced such as telecommunication and prioritization assistance to ports and critical infrastructure. Finally, the report offers opportunities to minimize the impacts experienced from storms and other disruptions to enhance the resilience of the MTS and supporting infrastructure.
  • AIS data case Study: identifying AIS coverage gaps on the Ohio River in CY2018

    Abstract: This Coastal and Hydraulics Engineering Technical Note describes a method for evaluating the received coverage from Automatic Identification System shore sites and the availability of historic vessel position reports along the Ohio River. The network of AIS shoreside sites installed and operated by the US Army Corps of Engineers and the US Coast Guard receive information transmitted from vessels; however, reception of these transmissions is generally line-of-sight between the vessel and the AIS site antenna. Reception may also be affected by factors such as the quality of the transceiver installation aboard the vessel as well as the state of the equipment at the receiving site. Understanding how to define and quantify coverage gaps along the inland river system can inform research utilizing AIS data, provide information on the performance of the AIS network, and provide guidance for efforts to address identified coverage gaps.
  • AIS data case study: quantifying connectivity for six Great Lakes port areas from 2015 through 2018

    Abstract: This Coastal and Hydraulics Engineering Technical Note presents results from a preliminary examination of commercial vessel traffic connectivity between six major port areas on the Great Lakes using Automatic Identification System data collected from 2015 to 2018. The six port areas included in this study are Calumet Harbor, IL and IN; Cleveland, OH; Detroit, MI; Duluth-Superior, MN and WI; Indiana Harbor, IN; and Two Harbors, MN. These six locations represent an important subset of the more than 100 federally authorized navigation projects in the Great Lakes maintained by the US Army Corps of Engineers. The results are presented in the context of USACE resilience-related policy initiatives as well as the larger topic of maritime system resilience.
  • Suppressing the pressure-source instability in modeling deep-draft vessels with low under-keel clearance in FUNWAVE-TVD

    Abstract: This Coastal and Hydraulics Engineering Technical Note (CHETN) documents the development through verification and validation of three instability-suppressing mechanisms in FUNWAVE-TVD, a Boussinesq-type numerical wave model, when modeling deep-draft vessels with a low under-keel clearance (UKC). Many large commercial ports and channels (e.g., Houston Ship Channel, Galveston, US Army Corps of Engineers [USACE]) are traveled and affected by tens of thousands of commercial vessel passages per year. In a series of recent projects undertaken for the Galveston District (USACE), it was discovered that when deep-draft vessels are modeled using pressure-source mechanisms, they can suffer from model instabilities when low UKC is employed (e.g., vessel draft of 12 m¹ in a channel of 15 m or less of depth), rendering a simulation unstable and obsolete. As an increasingly large number of deep-draft vessels are put into service, this problem is becoming more severe. This presents an operational challenge when modeling large container-type vessels in busy shipping channels, as these often will come as close as 1 m to the bottom of the channel, or even touch the bottom. This behavior would subsequently exhibit a numerical discontinuity in a given model and could severely limit the sample size of modeled vessels. This CHETN outlines a robust approach to suppressing such instability without compromising the integrity of the far-field vessel wave/wake solution. The three methods developed in this study aim to suppress high-frequency spikes generated nearfield of a vessel. They are a shock-capturing method, a friction method, and a viscosity method, respectively. The tests show that the combined shock-capturing and friction method is the most effective method to suppress the local high-frequency noises, while not affecting the far-field solution. A strong test, in which the target draft is larger than the channel depth, shows that there are no high-frequency noises generated in the case of ship squat as long as the shock-capturing method is used.
  • Brunswick Harbor Numerical Model

    Abstract: The Brunswick area consists of many acres of estuarine and marsh environments. The US Army Corps of Engineers District, Savannah, requested that the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, develop a validated Adaptive Hydraulics model and assist in using it to perform hydrodynamic modeling of proposed navigation channel modifications. The modeling results are necessary to provide data for ship simulation. The model setup and validation are presented here.