• USACE officials, Maui County Council and state partners discuss proposed parameters for Alternate Debris Removal Program at council meeting

    Representatives from the U.S. Army Corps of Engineers, Maui County, California Governor’s Office of Emergency Services and Maui Department of Health were available to answer questions from the Maui County Council Budget and Finance Committee.
  • USACE Temporary Power team nears mission completion after more than 45 days on Maui

    The U.S. Army Corps of Engineers’ Temporary Power Planning and Response Team was called upon to assist the people of Maui in the aftermath of the wildfires that impacted residents and business owners in Lahaina and Kula, Hawai‘i, on Aug. 8.
  • USACE Jacksonville announces contract award for FCCE re-nourishment of St. Augustine Beach

    USACE Jacksonville District, U.S. Army Corps of Engineers, awarded a $33.5 million contract Sept. 29 to Great Lakes Dredge & Dock Co., LLC, of Houston, Texas, to execute a Flood Control and Coastal Emergencies (FCCE) re-nourishment of the St. Augustine Beach federal shore protection project.
  • U.S. Army Corps of Engineers establishes Recovery Field Office in Kihei

    The U.S. Army Corps of Engineers established a Recovery Field Office this week on Maui to oversee
  • A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Forested Riverine Wetlands in Alluvial Valleys of the Piedmont Region of the United States

    Abstract: The Hydrogeomorphic (HGM) approach is used for developing and applying models for the site-specific assessment of wetland functions. It was initially designed for use in the context of the Clean Water Act Section 404 Regulatory Program permit review process to analyze project alternatives, minimize impacts, assess unavoidable impacts, determine mitigation requirements, and monitor the success of compensatory mitigation. However, a variety of other potential uses have been identified, including the design of wetland restoration projects, projecting ecological outcomes, developing success criteria and performance standards, and adaptive monitoring and management of wetlands. This guidebook provides an overview of the HGM approach including classification and characterization of the principal alluvial riverine wetlands identified in the Piedmont physiography. Eight potential subclasses of Piedmont wetlands, including Headwater, Low- and Mid-gradient Riverine, Floodplain Depression, Footslope Seeps, Flats, Precipitation Depressions, and Fringe wetlands were recognized. However, the occurrence of Flats, Precipitation Depressions, and Fringe wetlands in the Piedmont, are uncommon and not generally associated with alluvial riverine systems which is the subject of this Guidebook. Detailed HGM assessment models and protocols are presented for the five most common Piedmont riverine subclasses: Headwater, Low- and Mid-gradient Riverine, Floodplain Depression, and Footslope Seep. For each wetland subclass, the guidebook presents (a) the rationale used to select the wetland functions considered in the assessment process, (b) the rationale used to select assessment models, and (c) the functional index calibration curves developed from reference wetlands used in the assessment models. The guidebook outlines an assessment protocol for using the model variables and functional indices to assess each wetland subclass. The appendices provide field data collection forms. In addition, an automated spreadsheet model is provided to make calculations.
  • Chief of Engineers surveys fire-damaged areas in Lahaina

    Lt. Gen. Scott A. Spellmon, 55th Chief of Engineers, surveyed fire-damaged areas in Lahaina, Hawai'i, Sept. 26.
  • Development and Characterization of Ultra-High-Performance Concrete for the Rehabilitation of Navigation Lock Structures

    Abstract: This report details the history of vertical lock wall repairs and the development and laboratory characterization of an ultra-high-performance concrete (UHPC) using locally sourced materials for improved durability of lock walls subjected to impact and abrasion from navigational vessels. This UHPC, referred to as Lock-Tuf, has been designed for use in a precast environment with ambient curing methods and serves as a material proof-of-concept for future lock wall rehabilitations. Mechanical properties such as unconfined compressive strength, flexural response, tensile capacity, impact resistance, and abrasion resistance have been quantified experimentally.
  • Project Snowpack, innovating future floodplain weather prediction

    Historic flooding of the Upper Missouri River Basin in 2011 prompted the U.S. Army Corps of Engineers, Omaha District to explore additional solutions in improving flood prediction. This led to the implementation of Project Snowpack, a multi-state and federal agency program that will revolutionize floodplain management throughout the region.
  • Low Size, Weight, Power, and Cost (SWaP-C) Payload for Autonomous Navigation and Mapping on an Unmanned Ground Vehicle

    Abstract: Autonomous navigation and unknown environment exploration with an unmanned ground vehicle (UGV) is extremely challenging. This report investigates a mapping and exploration solution utilizing low size, weight, power, and cost payloads. The platform presented here leverages simultaneous localization and mapping to efficiently explore unknown areas by finding navigable routes. The solution utilizes a diverse sensor payload that includes wheel encoders, 3D lidar, and red-green-blue and depth cameras. The main goal of this effort is to leverage path planning and navigation for mapping and exploration with a UGV to produce an accurate 3D map. The solution provided also leverages the Robot Operating System
  • Arctic Seed Sterilization and Germination

    Abstract: We conducted growth chamber experiments to overcome challenges of native seed germination relating to disease and germination time. We selected five northern species, Eriophorum vaginatum, E. virginicum, Anemone patens var. multifida, Polemonium reptans, and Senecio congestus, for their native ranges and commercial-nursery availability. Recommended stratification time for each species was either unknown or a minimum of 60 days. Seeds were sterilized with 70% ethanol, 10% hydrogen peroxide, or UVC light to identify which method most effectively prevented pathogen infection. To determine if stratification time could be reduced, seeds underwent a 30-day cold, moist stratification. We tested which growth medium was most conducive to germination of the sterilized, stratified seeds: filter paper or sterilized potting soil. In a separate experiment, we tested if three different levels of gibberellic acid (GA3; 0, 500, and 1000 ppm) could reduce stratification time to 15 days. The 70% ethanol was effective in a seed surface sterilization; an average of 84% of all seeds for all species treated showed no contamination. Germination following a 30-day cold, moist stratification was unsuccessful for most species tested in both growth media. Here, 1000 ppm GA3 with a 15-day cold, moist stratification showed considerable success with P. reptans.