News Stories

Results:
Tag: aquatic plants
Clear
    • No Items.

News Releases

Results:
Tag: aquatic plants
Clear
  • Comparison of Generic and Proprietary Aquatic Herbicides for Control of Invasive Vegetation : Part 2. Emergent Plants

    Abstract: Aquatic herbicides are one of the most effective and widespread ways to manage nuisance vegetation in the US After the active ingredient is selected, often there are numerous proprietary and generic branded products to select from. To date, limited efforts have been made to compare the efficacy of brand name and generic herbicides head to head; therefore, at tot al of 20 mesocosm trials were conducted to evaluate various 2,4 -D, glyphosate, imazapyr, and triclopyr products against alligatorweed (Alternanthera philoxeroides (Mart.) Griseb.), southern cattail (hereafter referred to as cattail, Typha domingensis Pers.), and creeping water primrose (hereafter referred as primrose, Ludwigia peploides (Kunth) P.H. Raven). All active ingredients were applied to foliage at broadcast rates commonly used in applications to public waters. Proprietary and generic 2,4 -D, glyphosate, imazapyr, and triclopyr were efficacious and provided 39 to 99% control of alligatorweed, cattail and primrose in 19 of the 20 trials. There were no significant differences i n product performance except glyphosate vs. alligatorweed (trial 1, Rodeo vs. Roundup Custom) and glyphosate vs. cattail (trial 1, Rodeo vs. Glyphosate 5.4). These results demonstrate under small -scale conditions, the majority of the generic and proprietary herbicides provided similar control of emergent vegetation, regardless of active ingredient.
  • Evaluation of New Endothall and Florpyrauxifen-benzyl Use Patterns for Controlling Crested Floating Heart and Giant Salvinia

    Purpose: The purpose of this research was to (1) evaluate concentration exposure time (CET) relationships for florpyrauxifen-benzyl (ProcellaCOR) for control of the floating leaved plant crested floating heart (Nymphoides cristata, CFH) and (2) evaluate foliar applications of endothall (Aquathol K) for control of CFH and the floating fern giant salvinia (Salvinia molesta).
  • PUBLICATION NOTICE: Post-Project Monitoring of a Navigation Solution in a Dynamic Coastal Environment, Smith Island, Maryland: Year One of Post-Project Monitoring

    Abstract: In 2018, jetties and a sill were constructed by the US Army Corps of Engineers (USACE) adjacent to the Sheep Pen Gut Federal Channel at Rhodes Point, Smith Island, Maryland. These navigation improvements were constructed under Section 107 of the Continuing Authorities Program. Material dredged for construction of the navigation structures and realignment of the channel were used to restore degraded marsh. Following construction and dredging, 1 year of post-project monitoring was performed to evaluate the performance of navigation improvements with respect to the prevention of shoaling within the Sheep Pen Gut channel, shoreline changes, and impacts to submerged aquatic vegetation (SAV). Given the short period of record after the completion of the navigation improvements, it was difficult to draw conclusions regarding stability of the channel, structures, and shoreline. Therefore, this report documents methodology and baseline conditions for monitoring, except for SAV, which was found to be potentially impacted by construction. A second year of monitoring was funded by the USACE Regional Sediment Management Program for fiscal year 2020. Findings can be used to inform plan formulation and design for USACE navigation projects by illuminating considerations for placement of structures to prevent shoaling and by informing SAV management decisions.

Institute for Water Resources

Pacific Ocean Division

District welcomes new tribal liaison
Nov. 14, 2023 UPDATED

South Pacific Division

News/News Release Search

@USACEHQ

Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
X
46,090
Follow Us