News Stories

Results:
Tag: Environmental Management
Clear
    • No Items.

News Releases

Results:
Tag: Environmental Management
Clear
  • Environmental Quality Requirements Model Program Objective Memorandum Fiscal Years 2021–2025

    Abstract: This document describes the methodology used to evaluate the costs incurred by organizations involved in planning, programming, budgeting, and execution of the Army’s environmental programs and estimating those costs for future year planning cycles, this model is referred to as the Environmental Quality Requirements Model (EQRM). The EQRM is used to develop the budget positions as presented to Congress to obtain the Operations and Maintenance appropriations. These appropriations fund the Environmental Quality Program which includes Compliance, Conservation and Pollution Prevention requirements. The model encompasses the commands under the funding structure of the Deputy Chief of Staff – G9 Installations which includes the following: Installation Management Command, the Army National Guard, the Army Reserve Command, and the Army Materiel Command.
  • Estimating the Density of Secretive, At-risk Snake Species on DoD Installations Using an Innovative Approach: IDEASS

    Abstract: The Department of Defense (DoD) expends considerable resources managing and conserving threatened, endangered, or at-risk snake species. Management for these species is often hampered by a lack of basic knowledge regarding their population size and trajectory. The low detectability of most snakes makes it difficult to determine their presence, or to employ traditional methods to estimate abundance. This work demonstrated a novel, simulation-based method, Innovative Density Estimation Approach for Secretive Snakes (IDEASS), for estimating snake density based on systematic road surveys, behavioral observations of snake movement, and spatial movement (radio telemetry) data. This method was used to generate meaningful density estimates for two rare and cryptic snakes of conservation concern, the Southern Hognose and Eastern Diamondback Rattlesnake, at Fort Stewart, Georgia. IDEASS was also applied to an existing dataset to retroactively estimate density of a more common species of management concern, the Western Ratsnake, at Fort Hood, Texas. In all three cases, traditional density estimation via visual surveys and capture-mark-recapture (CMR) failed completely due to lack of captures and re-captures, despite extensive field effort. We conclude that IDEASS represents a powerful tool, and in some cases the only viable method, for estimating density of secretive snakes.
  • Corps of Engineers awards $4.1 million contract to restore part of the Minnesota Valley National Wildlife Refuge

    ST. PAUL, Minn. –The U.S. Army Corps of Engineers, St. Paul District, awarded a $4.1 million contract to S.M. Hentges & Sons Inc., of Jordan, Minnesota, June 18, to begin constructing a habitat restoration project between Shakopee and Savage, Minnesota.
  • PUBLICATION NOTICE: Nearshore Placement Workshop 2019: Sediment Nourishment of the Nearshore Environment

    Abstract: The Coastal Inlets Research Program and the Regional Sediment Management Program co-sponsored the 2019 Nearshore Placement Workshop. Thirty-four participants from the US Army Engineer Research and Development Center (ERDC) and numerous districts met in Vicksburg on January 29–30, 2019, as a part of the workshop. This workshop was convened to facilitate discussions on concerns districts face regarding nearshore placements from resource agencies and stakeholders, challenges to placing sediment in the nearshore, and future research needs. The workshop included ERDC presentations on the state of the science regarding nearshore placements; specific implementations of nearshore placements within various US Army Corps of Engineers districts; break-out-style discussions on nearshore placement challenges and potential paths forward; and group discussions on metrics for success, quantification of benefits, Statements of Need (SON), and research priorities. A few of the major recurring themes throughout the workshop were the importance of monitoring, concerns over the fate of fine-grained sediment, and difficulties conveying the benefits of nearshore placements to a wide range of audiences. The workshop culminated in a discussion of possible SON to be put forth to the ERDC research and development community. This special report describes the discussions and outcomes of the 2019 Nearshore Placement Workshop.
  • PUBLICATION NOTICE: Baldcypress (Taxodium distichum) at the Wallisville Lake Project: A Review of Applicable Literature and Management Considerations

    Abstract: Changing hydropatterns within the Wallisville Lake Project, near the mouth of the Trinity River in Chambers and Liberty Counties, Texas, have the potential to alter baldcypress forest resiliency. Increasing water levels support saltwater barrier operations while maintaining navigation and recreational access. However, potential impacts of increased water levels on the baldcypress forests are of particular concern because these ecosystems provide unique ecological value and wildlife habitat. The maintenance, succession, and resiliency of baldcypress under various flooding, salinity, and inundation regimes remain poorly defined and pose challenges to resource managers. This report reviews available literature pertaining to salinity and inundation impacts to baldcypress forests. Specific emphasis is placed on the ecological effects of water quality and quantity on the health and persistence of baldcypress. The information gathered in this report is intended to supplement material in the Wallisville Lake Project Water Control Manual to improve management of baldcypress forest conditions and avoid negative ecological impacts. Additionally, this report provides management considerations designed to maintain or enhance baldcypress forests within the Wallisville Lake Project.
  • PUBLICATION NOTICE: Conspecific Attraction as a Management Tool for Endangered and At-Risk Species on Military Lands

    Abstract: Movements of wildlife species and associated colonization of habitats is often unpredictable, potentially leading to ineffective management and/or interference with military training. Habitat restoration for wildlife management on military lands is a common, yet expensive, response to federal conservation and mitigation mandates, yet viable wildlife populations often fail to become established on restored habitat. Conspecific attraction, using the tendency for individuals of the same species to settle near one another, can be a cost-effective means of attracting animals to newly created or restored habitats. This work demonstrated the use of conspecific attraction as an alternative tool for encouraging colonization of restored habitats by at-risk birds and amphibians. Conspecific attraction was relatively straightforward to employ, but its effectiveness varied among species. We demonstrated clear success in attracting some bird (northern bobwhite; Colinus virginianus) and frog (wood frogs; Lithobates sylvaticus) species into our target areas but other species showed a neutral response. Conspecific attraction presents a cost-effective alternative to current management practices such as translocation or colonization after habitat is created or restored. Only minimal equipment costs (<$300/broad-cast station) and nominal work-hours are required to set up the equipment, and total cost was ~$1,200 per demonstration plot annually.
  • PUBLICATION NOTICE: Analysis of Nearshore Placement of Sediments at Ogden Dunes, Indiana

    ABSTRACT: The harbor structures/shoreline armoring on the southern Lake Michigan shoreline interrupt sand migration. Ogden Dunes, Indiana, and the nearby Indiana Dunes National Lakeshore observed shoreline erosion due to engineered structures associated with Burns Waterway Harbor (east of Ogden Dunes) impeding natural east-to-west sediment migration. To remedy this, USACE placed over 450,000 cubic meters (m3) of dredged material post-2006 in the nearshore of Ogden Dunes. However, the effectiveness of nearshore placements for shoreline protection and littoral nourishment is not fully established. To improve nearshore placement effectiveness, USACE monitored the June/July 2016 placement and subsequent movement of 107,000 m3 of dredged material in the nearshore region at Ogden Dunes. This involved an extensive monitoring scheme (three bathymetry surveys, and two acoustic Doppler current profiler deployments), a Coastal Modeling System (CMS) numerical model of the changes following placement, and a prediction of sediment transport direction using the Sediment Mobility Tool (SMT). The SMT-predicted sediment migration direction was compared to observations. Observations indicated that between 10/11/2016 and 11/15/2016 the centroid of the sediment above the pre-placement survey moved 17 m onshore. These observations agreed with SMT predictions — onshore migration under storm and typical wave conditions. CMS accurately reproduced the hydrodynamic features.
  • PUBLICATION NOTICE: Nested Physics-Based Watershed Modeling at Seven Mile Creek: Minnesota River Integrated Watershed Study

    ABSTRACT: The Minnesota River Basin (MRB) Integrated Study Team (IST) was tasked with assessing the condition of the MRB and recommending management options to reduce suspended sediments and improve the water quality in the basin. The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) was chosen by the IST as the fine scale model for the Seven Mile Creek Watershed to help quantify the physical effects from best management practices within the MRB. The predominately agricultural Seven Mile Creek Watershed produces high total suspended solids and nutrients loads, contributing roughly 10% of the total load to the Minnesota River. GSSHA models were developed for a small experimental field research site called Red Top Farms, a Hydrologic Unit Code (HUC)-12 model for the entire Seven Mile Creek Watershed, a sub-basin of the Seven Mile Creek Watershed. After calibration, the resulting models were able to simulate measured tile drain flows, stream flow, suspended sediments, and to a lesser extent, nutrients. A selected suite of alternative land-use scenarios was simulated with the models to determine the watershed response to land-use changes at the small and medium scale and to test whether the type, size, and spatial distribution of land uses will influence the effectiveness of land management options.
  • PUBLICATION NOTICE: Update to: Use of Engineering With Nature® Concepts on the Savannah Harbor Navigation Project, Dredged Material Containment Areas, Savanna, GA

    NOTE: A new PDF for this report was uploaded on 2/20/2020 to correct an error that was in the previous version. The link to the report on Knowledge Core will still remain the same. If you have downloaded a version of the report prior to now please replace it with the new version now available. Link: http://dx.doi.org/10.21079/11681/35353   Report Number: ERDC/TN EWN-20-1 Title: Use of Engineering With Nature® Concepts on the Savannah Harbor Navigation Project, Dredged Material Containment Areas, Savanna, GA By Michael P. Guilfoyle, J. Stevan Calver, Mary E. Richards, and Richard A. Fischer Approved for Public Release; Distribution is Unlimited January 2020 Purpose: This document summarizes the management approach for the Dredged Material Confinement Areas (DMCAs) (located in Jasper County, SCa) at the Savannah Harbor Navigation Project (SHNP) in the Savannah Harbor, Chatham County, GA. The LTMS was initiated to mitigate wetland losses in Georgia and South Carolina from ongoing dredged material deposition, harbor deepening efforts, and normal operating activities from maintenance of the Savannah Harbor. Since the inception and implementation of the LTMS in 1996, USACE has recognized that engineering operations, particularly those that involve dredged material deposition, can provide opportunities for infrastructure enhancement by applying improved engineering practices, and by incorporating natural features in the final product, which yield additional environmental benefits. The Engineering With Nature® (EWN) initiative incorporates both infrastructure development and enhancement with environmental management.  The purpose of this technical note is to: (1) summarize the creation and management of the DMCAs from implementation of the LTMS, (2) identify and describe features of the LTMS in common with EWN principles, and (3) discuss how this approach improves USACE’s ability to meet mission objectives while providing environmental benefits to the local and regional ecosystem.
  • PUBLICATION NOTICE: Use of Engineering With Nature® Concepts on the Savannah Harbor Navigation Project, Dredged Material Containment Areas, Savanna, GA

    This document summarizes the management approach for the Dredged Material Confinement Areas (DMCAs) (located in Jasper County, SCa) at the Savannah Harbor Navigation Project (SHNP) in the Savannah Harbor, Chatham County, GA.

Institute for Water Resources

Pacific Ocean Division

District welcomes new tribal liaison
Nov. 14, 2023 UPDATED

South Pacific Division

News/News Release Search

@USACEHQ

Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
X
46,425
Follow Us