News Stories

Results:
Tag: Trafficability
Clear
    • No Items.

News Releases

Results:
Tag: Trafficability
Clear
  • Snow-Covered Obstacles’ Effect on Vehicle Mobility

    ABSTRACT:  The Mobility in Complex Environments project used unmanned aerial systems (UAS) to identify obstacles and to provide path planning in forward operational locations. The UAS were equipped with remote-sensing devices, such as photogrammetry and lidar, to identify obstacles. The path-planning algorithms incorporated the detected obstacles to then identify the fastest and safest vehicle routes. Future algorithms should incorporate vehicle characteristics as each type of vehicle will perform differently over a given obstacle, resulting in distinctive optimal paths. This study explored the effect of snow-covered obstacles on dynamic vehicle response. Vehicle tests used an instrumented HMMWV (high mobility multipurpose wheeled vehicle) driven over obstacles with and without snow cover. Tests showed a 45% reduction in normal force variation and a 43% reduction in body acceleration associated with a 14.5 cm snow cover. To predict vehicle body acceleration and normal force response, we developed two quarter-car models: rigid terrain and deformable snow terrain quarter-car models. The simple quarter models provided reasonable agreement with the vehicle test data. We also used the models to analyze the effects of vehicle parameters, such as ground pressure, to understand the effect of snow cover on vehicle response.
  • PUBLICATION NOTICE: Preliminary Assessment of Landform Soil Strength on Glaciated Terrain in New Hampshire

    Abstract: Accurate terrain characterization is important for predicting off-road vehicle mobility. Soil strength is a significant terrain characteristic affecting vehicle mobility. Collecting soil strength measurements is laborious, making in-situ observations sparse. Research has focused on providing soil strength estimates using remote sensing techniques that can provide large spatial and temporal estimates, but the results are often inaccurate. Past attempts have quantified the soil properties of arid environments using landform assessments; yet many military operating environments occupy high latitude regions with landscapes dominated by glacial deposits. This study took preliminary strength measurements for glacial landforms deposited from the Laurentide Ice Sheet in New England. A range of common glacial landforms were sampled to assess shear strength, bearing capacity, and volumetric moisture content. Glacial outwash landforms had the highest average shear strengths, glacial deltas the lowest. There was a significant negative correlation between silt content and shear strength of the soil, a significant positive correlation between bearing capacity and clay content, and a significant negative correlation with sand content. Moisture content of soils was inversely correlated to the abundance of gravel in the deposit. This work provides initial insight to this approach on glaciated terrain, but continued sampling will provide more robust correlations.

Institute for Water Resources

Pacific Ocean Division

District welcomes new tribal liaison
Nov. 14, 2023 UPDATED

South Pacific Division

News/News Release Search

@USACEHQ

Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
X
46,725
Follow Us