Abstract: Silica fume (SF) influences the hydration rate of Portland cement in differ-ent ways depending on the physical and chemical properties of the SF. This study reports the impact of SiO2 content (%), loss on ignition (%), and Brunauer–Emmett–Teller (BET) specific surface area on the hydration re-action of SF-cement paste mixtures. This study used five types of SFs with varying SiO2 content, loss on ignition (%), and particle morphology. Five SFs were mixed with Class H oil well cement at each of two different re-placement levels (20% or 30% by mass), and the released heat of hydra-tion was measured using isothermal calorimetry. The results were used to improve the pozzolanic reaction simulation feature of the original Virtual Cement and Concrete Testing Laboratory software, which enabled the soft-ware to simulate a higher SF replacement ratio in a cement mixture with higher fidelity. Results showed that a silica fume’s SiO2 content (%), loss on ignition (%), and BET specific surface area significantly influence the heat release rate. The new simulation model agrees well with the measure-ments on all the pastes tested.