Purpose: This Coastal and Hydraulics Engineering Technical Note (CHETN) evaluates the application of a traditional approach to screening and sampling historical storm events to quantify wave and water-level extremal distributions along the US West Coast, specifically focusing on Washington, Oregon, and California. High-fidelity simulations of storm events enable spatially explicit waves and water-level information in shallow nearshore regions, providing greater context than single-point tide gauges, wave buoys, or hindcast wave nodes in offshore waters. However, the computational expense associated with such simulations necessitates that a select number of events be chosen, ideally representative of the same extreme distribution created by the complete history of storms. Storm selection has previously been shown to be sensitive to the observational record length and the storm sample size but notably also region-specific characteristics such as the common (and uncommon) synoptic weather patterns and the alongshore variability of metocean conditions. The US Army Engineer Research and Development Center (ERDC), Coastal Hazards System (CHS), Stochastic Simulation Technique (SST), which was developed for the quantification of extratropical cyclone (XC) hazards based on extreme value analysis techniques, has previously been used to identify storms for high-fidelity simulations in several regions throughout the United States, including the Great Lakes (Nadal-Caraballo et al. 2012), US mid- and North Atlantic (Nadal-Caraballo et al. 2014; Nadal-Caraballo et al., “North Atlantic Coast,” 2015; Nadal-Caraballo et al., “Statistical Analysis,” 2015), and US South Atlantic (Yawn et al. 2024b) and Gulf of Mexico (Yawn et al. 2024a). However, coastal hazards for the US West Coast and the Pacific Basin are a consequence of multiple compounding oceanographic, meteorologic, and climatic phenomena contributing to waves and water levels with unique characteristics compared to tropical cyclone–dominated coasts. This effort defines total water levels as a combination of still-water levels (SWLs), incident wave runup, and infragravity runup as a proxy for the water elevation experienced at the shoreline during storm events. Dynamic total water levels during extreme events are then separated into individual contributions from oceanic and meteorological phenomena occurring at a variety of timescales, such as seasonal and monthly sea-level anomalies. Results from this analysis highlight future SST developments that will be required as part of a comprehensive CHS-Probabilistic Framework (CHS-PF) for the US West Coast and the Pacific Basin. Specifically, the methodology will need to (1) account for temporal clustering of storm sequences, (2) align with the parameters most relevant to US West Coast coastal storm risk management projects, and (3) develop an approach to create composite storm suites derived from extremes in multiple metocean parameters due to limited overlap between those storms that produce extremes in still water and those storms driving open-coast wave-induced extremes.