Abstract: Environmental conditions such as the near-surface soil moisture content are valuable information in object detection problems. However, such information is generally unobtainable at the necessary scale without active sensing. Richards’ equation is a partial differential equation (PDE) that describes the infiltration process of unsaturated soil. Solving the Richards’ equation yields information about the volumetric soil moisture content, hydraulic conductivity, and capillary pressure head. However, Richards’ equation is difficult to approximate due to its nonlinearity. Numerical solvers such as finite difference method (FDM) and finite element method (FEM) are conventional in approximating solutions to Richards’ equation. But such numerical solvers are time-consuming when used in real-time. Physics-informed neural networks (PINNs) are neural networks relying on physical equations in approximating solutions. Once trained, these networks can output approximations in a speedy manner. Thus, PINNs have attracted massive attention in the numerical PDE community. This project aims to apply PINNs to the Richards’ equation to predict underground soil moisture content under known precipitation data.