Results:
Tag: hydrology
Clear
  • Foundational Principles in the Development of AdH-SW3, the Three-Dimensional Shallow Water Hydrodynamics and Transport Module within the Adaptive Hydraulics/Hydrology Model

    Abstract: This report details the design and development of the three-dimensional shallow water hydrodynamics formulation within the Adaptive Hydraulics/Hydrology model (AdH-SW3) for simulation of flow and transport in rivers, estuaries, reservoirs, and other similar hydrologic environments. The report is intended to communicate principles of the model design for the interested and diligent user. The design relies upon several layers of consistency to produce a stable, accurate, and conservative model. The mesh design can handle rapid changes in bathymetry (e.g., steep-sided navigation channels in estuaries) and maintain accuracy in density-driven transport phenomena (e.g., thermal, or saline stratification and intrusion of salinity).
  • Summary of Ground-Based Snow Measurements for the Northeastern United States

    ABSTRACT: Snow is an important resource for both communities and ecosystems of the Northeastern United States. Both flood risk management and water supply forecasts for major municipalities, including New York City, depend on the collection of snowpack information. Therefore, the purpose of this study is to summarize all of the snowpack data from ground-based networks currently available in the Northeast. The collection of snow-depth and snow water equivalent information extends back several decades, and there are over 2,200 active sites across the region. Sites are distributed across the entire range of elevations in the region. The number of locations collecting snow information has increased substantially in the last 20 years, primarily from the expansion of the CoCoRaHS (Community Collaborative Rain, Hail, and Snow) network. Our summary of regional snow measurement locations provides a foundation for future studies and analysis, including a template for other regions of the United States.
  • Field Guide to Identifying the Upper Extent of Stream Channels

    ABSTRACT: The upper extent of a channel is a transition zone from the hillslope to the beginning of the stream channel. Accurately and consistently identifying the upper extent of a channel in the field and locating where hillslope processes transition to stream-channel processes can be a difficult task. Physical characteristics located at the beginning of a channel (i.e., channel head), including geomorphic, sediment, and vegetation indicators, can vary significantly across different landscapes in the United States. Remote tools are useful for examining the upper extent of channels, but these remote tools have limitations for identifying the beginning of channels. Even as the resolution of remote data continues to increase, field observations are necessary to validate the remote data on the ground and to accurately and consistently identify and locate the transition from the hillslope to the stream channel. Use of a combination of remote and field evidence is likely the most successful strategy for identifying channel heads. This report presents a case study that demonstrates how a weight-of-evidence approach can combine field and remote evidence to locate the different parts of the transition and ultimately to identify the channel-head location.
  • Celebrating World Wetlands Day

    World Wetlands Day was celebrated this week with the theme ‘Call to Act’ for Wetlands. It's an appeal to invest financial, human, and political capital to save the world’s wetlands from disappearing and to restore those we have degraded. It highlights the need to raise national and global awareness about wetlands to reverse their rapid loss and encourage actions to conserve and restore them. To protect against further loss, the nation has in recent years adopted a policy of "no net loss" of wetlands. USACE, working in partnership with many other organizations, is helping to implement this policy by protecting, preserving, and restoring.
  • The "New" National Inventory of Dams (NID)'s Redesigned Website Now With Flood Inundation Maps to Download and ‘Share’

    The NID is the central repository for information about dams in the U.S. and its territories that
  • Congratulating Achievements - IWR ANNUAL AWARDS Recap

    Employee recognition at the Institute for Water Resources (IWR) is all about acknowledging the hard
  • Remembering a Memphis District hero, brother

    The Memphis District and Chasteen family recently lost a beloved member to a hard-fought battle with cancer. Darian Chasteen, who most recently held the Hydraulics and Hydrology Branch Deputy Chief title, passed away on May 7, 2021. While no longer physically with us, his legacy will forever live on. Chasteen served more than 30 years with the U.S. Army Corps of Engineers, Memphis District. During that time, he made many friends and touched numerous lives. In honor of his life and the contributions he made, we take a look back at his life, happy and thankful to have known such a person.
  • Channel Assessment Tools for Rapid Watershed Assessment

    Purpose: Existing Delta Headwaters Project (DHP) watershed stabilization studies are focused on restoration and stabilization of degraded stream systems. The original watershed studies formerly under the Demonstration Erosion Control (DEC) Project started in the mid 1980s. The watershed stabilization activities are continuing, and because of the vast number of degraded watersheds and limited amount of yearly funding, there is a need for developing a rapid watershed assessment approach to determine which watersheds to prioritize for further work. The goal of this project is to test the FluvialGeomorph (FG) toolkit to determine if the Rapid Geomorphic Assessment approach can identify channel stability trends in Campbell Creek and its main tributary. The FG toolkit (Haring et al. 2019; Haring et al. 2020) is a new rapid watershed assessment approach using high-resolution terrain data (Light Detection and Ranging [LiDAR]) to support U.S. Army Corps of Engineers (USACE) watershed planning. One of the principal goals of the USACE SMART (Specific Measureable Attainable Risk-Informed Timely) Planning is to leverage existing data and resources to complete studies. The FG approach uses existing LiDAR to rapidly assess either reach-specific analysis for smaller more focused studies or larger watersheds or ecosystems. The rapid assessment capability can reduce the time and cost of planning by using existing information to complete a preliminary watershed assessment and provide rapid results regarding where to focus more detailed study efforts.
  • Hydrology? District team provides professional water resources expertise, support

    Flowing through the U.S. Army Corps of Engineers, Omaha District’s area of responsibility, the Missouri River is the longest in the U.S. and its basin (watershed) covers more than 500 thousand square miles. The District’s hydrology section team plays a vital role in supporting this important civil works mission and helping to manage this precious natural resource.
  • Stormwater Management and Optimization Toolbox

    Abstract: As stormwater regulations for hydrologic and water quality control become increasingly stringent, Department of Defense (DoD) facilities are faced with the daunting task of complying with multiple laws and regulations. This often requires facilities to plan, design, and implement structural best management practices (BMPs) to capture, filter, and/or infiltrate runoff—requirements that can be complicated, contradictory, and difficult to plan. This project demonstrated the Stormwater Management Optimization Toolbox (SMOT), a spreadsheet-based tool that effectively analyzes and plans for compliance to the Energy Independence and Security Act (EISA) of 2007 pre-hydrologic conditions through BMP implementation, resulting in potential cost savings by reducing BMP sizes while simultaneously achieving compliance with multiple objectives. SMOT identifies the most cost-effective modeling method based on an installation’s local conditions (soils, rainfall patterns, drainage network, and regulatory requirements). The work first demonstrated that the Model Selection Tool (MST) recommendation accurately results in the minimum BMP cost for 45 facilities of widely varying climatic and regional conditions, and then demonstrated SMOT at two facilities.