Results:
Tag: inland navigation
Clear
  • LaGrange Lock and Dam, Illinois River: Navigation Approach Physical Model

    Abstract: A physical model study of the LaGrange Lock and Dam was conducted to optimize the navigation conditions for the new landside lock chamber design developed by the US Army Corps of Engineers–Rock Island District, Inland Navigation Design Center, and Stanley Consultants. A 1:120 Froude scale model was built to evaluate the navigation conditions for tows entering and exiting the upper and lower approaches. The final design consisted of a new 1,200 ft lock chamber located landward of the existing chamber. Data were collected to evaluate tow tracks and current direction and velocity information. Satisfactory navigation conditions were developed, and details are shown in the results section of this report.
  • Norfolk Harbor Navigation Improvements Project: Modeling of Dredged Material Placement Schemes and Long-Term Sediment Transport at the Dam Neck Ocean Disposal Site

    Abstract: US Army Corps of Engineers–Norfolk District requested assistance with the development and evaluation of dredged-material-placement schemes that evenly distribute placed material and avoid or minimize unacceptable mounding in accordance with the site management and monitoring plan. A multiple placement fate and transport modeling study was conducted to determine the optimal placement plan for dredged material from Thimble Shoals Channel and Atlantic Ocean Channel at the Dam Neck Ocean Disposal Site (DNODS). Provided the large volume of dredged material to be placed at DNODS over a short duration during the construction period, a modeling study was performed using the Geophysical Scale Multi-Block (GSMB) modeling system to determine the transport and fate of placed dredged material at the DNODS that is resuspended by currents and waves over a 2-year period. Six scenarios were undertaken to determine the best path forward. Scenarios 1 and 4 were excluded due to high exceedance of the depth threshold. Scenarios 2, 3, 5, and 6 yielded an approximate 1%–2% dispersal of placed materials from the DNODS during ambient environmental conditions; Scenario 6 yielded the least. Most dispersion occurred during two simulated hurricanes. The model findings generally support the DNODS Environmental Impact Statement and site-designation documents.
  • Montgomery Locks and Dam, Ohio River: Navigation Approach Physical Model

    Abstract: A physical model study of the Montgomery Locks and Dam was conducted to optimize the navigation conditions for the new riverside lock and guard wall design developed by the Pittsburgh District. A 1:100 Froude scale physical model was built to evaluate the navigation conditions for tows entering and exiting the locks in the upstream and downstream approaches. Conditions tested were Existing Conditions, Deconstruction Sequences, Construction Sequences, and Proposed Design. Data were also collected for impact analysis on the upstream and downstream riverside guard walls. The final design consisted of an upstream ported guard wall that is 1,000 ft in length and a downstream solid guard wall that is 800 ft in length. The implementation of submerged dikes in the upstream and downstream approaches improve navigation conditions significantly and are an essential part of the final design. Details are shown in Section 3.5 of this report.
  • Upper Mississippi River Main Channel Sediment Placement: Purpose, Practice, Effects, and Recommendations

    Abstract: Dredged-sediment management in the Upper Mississippi River and Illinois Waterway is constrained by environmental factors and regulations that limit where sediment can be placed. Regulations regarding in-water sediment placement are not consistent among states. In-water placement should be promoted because it keeps sediment in the system and reduces costs for managing sediment dredged from the river. Studies investigating the environmental effects of in-water placement generally conclude that sand-on-sand placement has minimal effect on aquatic resources in the dynamic riverine environment. This report discusses in-water sediment management techniques, including flow- and sediment-regulating structures (i.e., dikes and wing dams) and a bed-load sediment collector by-pass system.
  • Remote Monitoring of Cathodic Protection Systems on Navigable Waterways

    Abstract: Cathodic protection is one of the main modes of corrosion prevention for structures in navigable waterways. The rectifier output voltage must be in a specific range to provide effective protection against corrosion. This effort was designed to monitor, predict, and stabilize the efficacy of multiple cathodic protection systems. Copper/copper-sulfate half-cell electrode sensors, water quality sensors, and gauges for rectifier output were connected to modems at multiple locks so the data could be analyzed to create a predictive maintenance algorithm.
  • Corps to host renaming, dedication ceremony for John P. Murtha Locks and Dam

    The U.S. Army Corps of Engineers Pittsburgh District will host a ribbon-cutting and renaming ceremony for Locks and Dam 4 on the Monongahela River near Charleroi, Pennsylvania, Aug. 28.
  • Traveling Kevel Load Analysis for Inland Locks, Phase I: Previous Failures

    Abstract: The US Army Engineer Research and Development Center (ERDC) has begun an investigation of the load conditions experienced by a traveling kevel when moored to a moving barge train. These traveling kevel systems are essential for the safe and efficient use of the US Army Corps of Engineers (USACE) navigation lock inventory. This work is being conducted as part of the Navigation Systems Research Program of the Coastal and Hydraulics Laboratory (CHL). Recent failures of traveling kevels suggest that the existing design guidance for design loads for traveling kevels may need updating. This Coastal and Hydraulics Engineering Technical Note (CHETN) describes the pertinent background information and the current issues related to previous traveling kevel failures.
  • The Effect of Increasing the Antenna Height on Radio Signal Reception at Tom Bevill Lock and Dam: LOMA-AIS Data Case Study

    Abstract: This Coastal and Hydraulics Engineering Technical Note (CHETN) presents the effects on the reception of radio signals due to increasing the antenna height at Tom Bevill Lock and Dam (L&D) in Pickensville, Alabama. The signals are received Automatic Identification System (AIS) broadcasts from commercial vessels operating along the Tennessee-Tombigbee Waterway. These AIS broadcasts are received by the Lock Operations Management Application (LOMA) radio equipment at Tom Bevill L&D.
  • Lock and Dam 25, Upper Mississippi River Navigation Study: Ship-Simulation Results

    Abstract: The US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory (CHL), used the Ship/Tow Simulator to evaluate navigational conditions for the US Army Corps of Engineers, St. Louis District (MVS), proposed 1,200 feet (ft) lock chamber at Lock and Dam 25 in a tow simulation study. The study considers the impacts to navigation throughout construction sequences of the proposed 1,200 ft lock chamber and the final completed project. Testing occurred at CHL in October–November 2022 with five industry tow pilots. A total of 47 unique test conditions for a total of 187 ship-simulation exercises were evaluated. All final project simulations indicated that the design is feasible. When testing the construction scenarios of the design, it was evident that a tug assist boat would be necessary for entering the 600 ft lock for both approaches. Results found that the intermediate wall construction should begin at the existing structure and progress downstream. Entering the 600 ft lock from the pool side was additionally completed successfully; however, modifications are needed for entering from the tailwater side. Ultimately, the results of this study will aid MVS in the design plan and decision-making regarding the proposed lock.
  • Vessel Impacted by Structure on the Ohio River: Louisville District

    Abstract: This Dredging Operations Technical Support (DOTS) Program technical note presents the results of a study undertaken by the Navigation Branch, US Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL), at the request from the Louisville District (LRL) to examine an incident involving a single vessel and structure in a high-water condition. The vessel-position data used in this request were broadcast from an onboard Automatic Identification System (AIS) transceiver and received by US Army Corps of Engineers (USACE)–owned Lock Operations Management Application (LOMA) tower sites located along the Ohio River.