Results:
Tag: Machine learning
Clear
  • Assessing the Feasibility of Detecting Epileptic Seizures Using Non-Cerebral Sensor Data

    Abstract: This paper investigates the feasibility of using non-cerebral, time-series data to detect epileptic seizures. Data were recorded from fifteen patients (7 male, 5 female, 3 not noted, mean age 36.17 yrs), five of whom had a total of seven seizures. Patients were monitored in an inpatient setting using standard video-electroencephalography (vEEG), while also wearing sensors monitoring electrocardiography, electrodermal activity, electromyography, accelerometry, and audio signals (vocalizations). A systematic and detailed study was conducted to identify the sensors and the features derived from the non-cerebral sensors that contribute most significantly to separability of data acquired during seizures from non-seizure data. Post-processing of the data using linear discriminant analysis (LDA) shows that seizure data are strongly separable from non-seizure data based on features derived from the signals recorded. The mean area under the receiver operator characteristic (ROC) curve for each individual patient that experienced a seizure during data collection, calculated using LDA, was 0.9682. The features that contribute most significantly to seizure detection differ for each patient. The results show that a multimodal approach to seizure detection using the specified sensor suite is promising in detecting seizures with both sensitivity and specificity. Moreover, the study provides a means to quantify the contribution of each sensor and feature to separability. Development of a non-electroencephalography (EEG) based seizure detection device would give doctors a more accurate seizure count outside of the clinical setting, improving treatment and the quality of life of epilepsy patients.
  • Semi-Automated Land Cover Mapping Using an Ensemble of Support Vector Machines with Moderate Resolution Imagery Integrated into a Custom Decision Support Tool

    Abstract: Land cover type is a fundamental remote sensing-derived variable for terrain analysis and environmental mapping applications. The currently available products are produced only for a single season or a specific year. Some of these products have a coarse resolution and quickly become outdated, as land cover type can undergo significant change over a short time period. In order to enable on-demand generation of timely and accurate land cover type products, we developed a sensor-agnostic framework leveraging pre-trained machine learning models. We also generated land cover models for Sentinel-2 (20m) and Landsat 8 imagery (30m) using either a single date of imagery or two dates of imagery for mapping land cover type. The two-date model includes 11 land cover type classes, whereas the single-date model contains 6 classes. The models’ overall accuracies were 84% (Sentinel-2 single date), 82% (Sentinel-2 two date), and 86% (Landsat 8 two date) across the continental United States. The three different models were built into an ArcGIS Pro Python toolbox to enable a semi-automated workflow for end users to generate their own land cover type maps on demand. The toolboxes were built using parallel processing and image-splitting techniques to enable faster computation and for use on less-powerful machines.
  • Accelerating the Tactical Decision Process with High-Performance Computing (HPC) on the Edge: Motivation, Framework, and Use Cases

    Abstract: Managing the ever-growing volume and velocity of data across the battlefield is a critical problem for warfighters. Solving this problem will require a fundamental change in how battlefield analyses are performed. A new approach to making decisions on the battlefield will eliminate data transport delays by moving the analytical capabilities closer to data sources. Decision cycles depend on the speed at which data can be captured and converted to actionable information for decision making. Real-time situational awareness is achieved by locating computational assets at the tactical edge. Accelerating the tactical decision process leverages capabilities in three technology areas: (1) High-Performance Computing (HPC), (2) Machine Learning (ML), and (3) Internet of Things (IoT). Exploiting these areas can reduce network traffic and shorten the time required to transform data into actionable information. Faster decision cycles may revolutionize battlefield operations. Presented is an overview of an artificial intelligence (AI) system design for near-real-time analytics in a tactical operational environment executing on co-located, mobile HPC hardware. The report contains the following sections, (1) an introduction describing motivation, background, and state of technology, (2) descriptions of tactical decision process leveraging HPC problem definition and use case, and (3) HPC tactical data analytics framework design enabling data to decisions.
  • Associated Words Explorer (AWE) User Manual

    Abstract: This manual is intended for new users with minimal or no experience with using the Associated Word Explorer (AWE) tool. The goal of this document is to give an overview of the main functions of AWE. The primary focus of this document is to demonstrate functionality. Every effort has been made to ensure this document is an accurate representation of the functionality of the AWE tool. For additional information about this manual, contact ERDC.JAIC@erdc.dren.mil
  • Iterative Learning Algorithm for Records Analysis (ILARA) User Manual

    Abstract: This manual is intended for new users with minimal or no experience with using the Iterative Learning Algorithm for Records Analysis (ILARA) tool. The goal of this document is to give an overview of the main functions of ILARA. The primary focus of this document is to demonstrate functionality. Every effort has been made to ensure this document is an accurate representation of the functionality of the ILARA tool. For additional information about this manual, contact ERDC.JAIC@erdc.dren.mil
  • Machine Learning Analyses of Remote Sensing Measurements Establish Strong Relationships Between Vegetation and Snow Depth in the Boreal Forest of Interior Alaska

    Abstract: The seasonal snowpack plays a critical role in Arctic and boreal hydrologic and ecologic processes. Though snow depth can be different from one season to another there are repeated relationships between ecotype and snowpack depth. Alterations to the seasonal snowpack, which plays a critical role in regulating wintertime soil thermal conditions, have major ramifications for near-surface permafrost. Therefore, relationships between vegetation and snowpack depth are critical for identifying how present and projected future changes in winter season processes or land cover will affect permafrost. Vegetation and snow cover areal extent can be assessed rapidly over large spatial scales with remote sensing methods, however, measuring snow depth remotely has proven difficult. This makes snow depth–vegetation relationships a potential means of assessing snowpack characteristics. In this study, we combined airborne hyperspectral and LiDAR data with machine learning methods to characterize relationships between ecotype and the end of winter snowpack depth. Our results show hyperspectral measurements account for two thirds or more of the variance in the relationship between ecotype and snow depth. An ensemble analysis of model outputs using hyperspectral and LiDAR measurements yields the strongest relationships between ecotype and snow depth. Our results can be applied across the boreal biome to model the coupling effects between vegetation and snowpack depth.
  • Topological data analysis: an overview

    Abstract: A growing area of mathematics topological data analysis (TDA) uses fundamental concepts of topology to analyze complex, high-dimensional data. A topological network represents the data, and the TDA uses the network to analyze the shape of the data and identify features in the network that correspond to patterns in the data. These patterns extract knowledge from the data. TDA provides a framework to advance machine learning’s ability to understand and analyze large, complex data. This paper provides background information about TDA, TDA applications for large data sets, and details related to the investigation and implementation of existing tools and environments.
  • Automated Characterization of Ridge-Swale Patterns Along the Mississippi River

    Abstract: The orientation of constructed levee embankments relative to alluvial swales is a useful measure for identifying regions susceptible to backward erosion piping (BEP). This research was conducted to create an automated, efficient process to classify patterns and orientations of swales within the Lower Mississippi Valley (LMV) to support levee risk assessments. Two machine learning algorithms are used to train the classification models: a convolutional neural network and a U-net. The resulting workflow can identify linear topographic features but is unable to reliably differentiate swales from other features, such as the levee structure and riverbanks. Further tuning of training data or manual identification of regions of interest could yield significantly better results. The workflow also provides an orientation to each linear feature to support subsequent analyses of position relative to levee alignments. While the individual models fall short of immediate applicability, the procedure provides a feasible, automated scheme to assist in swale classification and characterization within mature alluvial valley systems similar to LMV.
  • Automated Terrain Classification for Vehicle Mobility in Off-Road Conditions

    ABSTRACT:  The U.S. Army is increasingly interested in autonomous vehicle operations, including off-road autonomous ground maneuver. Unlike on-road, off-road terrain can vary drastically, especially with the effects of seasonality. As such, vehicles operating in off-road environments need to be informed about the changing terrain prior to departure or en route for successful maneuver to the mission end point. The purpose of this report is to assess machine learning algorithms used on various remotely sensed datasets to see which combinations are useful for identifying different terrain. The study collected data from several types of winter conditions by using both active and passive, satellite and vehicle-based sensor platforms and both supervised and unsupervised machine learning algorithms. To classify specific terrain types, supervised algorithms must be used in tandem with large training datasets, which are time consuming to create. However, unsupervised segmentation algorithms can be used to help label the training data. More work is required gathering training data to include a wider variety of terrain types. While classification is a good first step, more detailed information about the terrain properties will be needed for off-road autonomy.
  • Evaluation of Automated Feature Extraction Algorithms Using High-resolution Satellite Imagery Across a Rural-urban Gradient in Two Unique Cities in Developing Countries

    Abstract: Feature extraction algorithms are routinely leveraged to extract building footprints and road networks into vector format. When used in conjunction with high resolution remotely sensed imagery, machine learning enables the automation of such feature extraction workflows. However, many of the feature extraction algorithms currently available have not been thoroughly evaluated in a scientific manner within complex terrain such as the cities of developing countries. This report details the performance of three automated feature extraction (AFE) datasets: Ecopia, Tier 1, and Tier 2, at extracting building footprints and roads from high resolution satellite imagery as compared to manual digitization of the same areas. To avoid environmental bias, this assessment was done in two different regions of the world: Maracay, Venezuela and Niamey, Niger. High, medium, and low urban density sites are compared between regions. We quantify the accuracy of the data and time needed to correct the three AFE datasets against hand digitized reference data across ninety tiles in each city, selected by stratified random sampling. Within each tile, the reference data was compared against the three AFE datasets, both before and after analyst editing, using the accuracy assessment metrics of Intersection over Union and F1 Score for buildings and roads, as well as Average Path Length Similarity (APLS) to measure road network connectivity. It was found that of the three AFE tested, the Ecopia data most frequently outperformed the other AFE in accuracy and reduced the time needed for editing.