• West Shore Lake Pontchartrain Public Scoping Meetings Scheduled

    The U.S. Army Corps of Engineers, New Orleans District has scheduled two virtual public scoping meetings to gather input for the preparation of the Supplemental Environmental Impact Statement (SEIS) regarding the West Shore Lake Pontchartrain project.
  • New River Dam outlet channel repair benefits from emergency funding

    The U.S. Army Corps of Engineers Los Angeles District is working with the Flood Control District of Maricopa County, Arizona, to repair five levee systems using the Public Law 84-99 Rehabilitation and Inspection Program.
  • NR 21-33: Virtual public meeting set Oct. 6, 2021 on public-private partnership at Cook Recreation Area

    NASHVILLE, Tenn. (Sept. 30, 2021) - The U.S. Army Corps of Engineers Nashville District is holding a virtual public meeting 6 to 8:30 p.m. Wednesday, Oct. 6, 2021 to share information about the proposed public-private partnership at Cook Recreation Area on the shoreline of J. Percy Priest Lake in Hermitage, Tennessee.
  • Soo Locks Visitor Center temporarily closing

    SAULT STE. MARIE, Mich., – The U.S. Army Corps of Engineers is temporarily closing the Soo Locks Visitor Center from Oct. 4, 2021 to Oct. 8, 2021. The Visitor Center will temporarily close to protect the safety of visitors and contractors while repairs are made to the roof and ceiling of the facility.
  • USACE seeks comments on proposed work by Greystone Enterprises LLC in Johnston, Rhode Island

     The U.S. Army Corps of Engineers, New England District received a permit application to conduct
  • Muddy River FRM project work to cause temporary road closure October 5 on Netherlands Road

     The U.S. Army Corps of Engineers, New England District announced today an upcoming temporary road
  • Accelerating the Tactical Decision Process with High-Performance Computing (HPC) on the Edge: Motivation, Framework, and Use Cases

    Abstract: Managing the ever-growing volume and velocity of data across the battlefield is a critical problem for warfighters. Solving this problem will require a fundamental change in how battlefield analyses are performed. A new approach to making decisions on the battlefield will eliminate data transport delays by moving the analytical capabilities closer to data sources. Decision cycles depend on the speed at which data can be captured and converted to actionable information for decision making. Real-time situational awareness is achieved by locating computational assets at the tactical edge. Accelerating the tactical decision process leverages capabilities in three technology areas: (1) High-Performance Computing (HPC), (2) Machine Learning (ML), and (3) Internet of Things (IoT). Exploiting these areas can reduce network traffic and shorten the time required to transform data into actionable information. Faster decision cycles may revolutionize battlefield operations. Presented is an overview of an artificial intelligence (AI) system design for near-real-time analytics in a tactical operational environment executing on co-located, mobile HPC hardware. The report contains the following sections, (1) an introduction describing motivation, background, and state of technology, (2) descriptions of tactical decision process leveraging HPC problem definition and use case, and (3) HPC tactical data analytics framework design enabling data to decisions.
  • Alternative Analysis for Construction Progress Data Spatial Visualization

    Abstract: The U.S. Army Corps of Engineers (USACE) construction projects have multiple stakeholders that collaborate with project delivery team members during the execution of these projects. Many of these stakeholders are located across the U.S., which makes virtual interactions a common communication method for these teams. These interactions often lack spatial visualization, which can add complications to the progress reports provided and how the information is received/interpreted. The visualization of project progress and documents would be invaluable to the stakeholders on critical projects constructed by the USACE. This research was conducted to determine alternatives for migrating Resident Management System (RMS) data into a portal web viewer. This report provides proposed solutions to creating these links in efforts to better harmonize data management and improve project presentation.
  • Determination of Residual Low-Order Detonation Particle Characteristics from IMX-104 Mortar Rounds

    ABSTRACT: The environmental fate and transport of energetic compounds on military training ranges are largely controlled by the particle characteristics of low-order detonations. This study demonstrated a method of command detonation, field sampling, laboratory processing, and analysis techniques for characterizing low-order detonation particles from 60 mm and 81 mm mortar rounds containing the insensitive munition formulation IMX-104. Particles deposited from three rounds of each caliber were comprehensively sampled and characterized for particle size, energetic purity, and morphology. The 60 mm rounds were command-detonated low order consistently (seven low-order detonations of seven tested rounds), with consumption efficiencies of 62%–80% (n = 3). The 81 mm rounds detonated low order inconsistently (three low-order detonations of ten tested rounds), possibly because the rounds were sourced from manufacturing test runs. These rounds had lower consumption efficiencies of 39%–64% (n = 3). Particle-size distributions showed significant variability between munition calibers, between rounds of the same caliber, and with distance from the detonation point. The study reviewed command-detonation configurations, particle transfer losses during sampling and particle-size analysis, and variations in the energetic purity of recovered particles. Overall, this study demonstrated the successful characterization of IMX-104 low-order detonation particles from command detonation to analysis.
  • Incorporating Terrain Roughness into Helicopter Landing Zone Site Selection by Using the Geomorphic Oscillation Assessment Tool (GOAT) v1.0

    ABSTRACT: The Geomorphic Oscillation Assessment Tool (GOAT) quantifies terrain roughness as a mechanism to better explain forward arming and refueling point (FARP) suitability for Army aviation. An empirically driven characteristic of FARP consideration, surface roughness is a key discriminator for site utility in complex terrain. GOAT uses a spatial sampling of high-resolution elevation and land cover data to construct data frames, which enable a relational analysis of component and aggregate site suitability. By incorporating multiple criteria from various doctrinal sources, GOAT produces a composite quality assessment of the areal options available to the aviation commander. This report documents and demonstrates version 1.0 of the GOAT algorithms developed by the U.S. Army Engineer Research and Development Center (ERDC). These details will allow users familiar with R to implement it as a stand-alone program or in R Studio.