Results:
Tag: coastal engineering
Clear
  • FUNWAVE-TVD Testbed: Analytical, Laboratory, and Field Cases for Validation and Verification of the Phase-Resolving Nearshore Boussinesq-Type Numerical Wave Model

    Abstract: Over the last couple of decades, advancements in high-performance computing have allowed phase-resolving, Boussinesq-type numerical wave models to be more practical in addressing nearshore coastal wave processes. As such, the open-source FUNWAVE-TVD numerical wave model has become more ubiquitous across all scientific and engineering-focused R&D organizations, including academic, government, and industry partners. In collaboration with the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory; the University of Delaware; and HR Wallingford, a robust testbed has been developed to allow users to benchmark their applications against new releases of the model. The testbed presented here includes analytical, laboratory, and field cases, to provide guidance on the operational utility of FUNWAVE-TVD and examines numerical convergence, accuracy, and performance in modeling wave generation, propagation, wave breaking, and moving shorelines in nearshore wind-wave applications. A brief discussion on the efficiency of the model across parallel computing platforms is also provided.
  • Rectifying and Stabilizing Planet SkySat Video Collects for Bathymetric Inversions from Space

    Abstract: This Coastal and Hydraulics Engineering Technical Note (CHETN) presents the development of a workflow to process Planet SkySat videos collected from space at the US Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL), Field Research Facility (FRF), in Duck, North Carolina, to derive wave kinematics and perform bathymetric inversions. The document summarizes the nine 30–60 s* satellite video collections, demonstrates the accuracy of an automated rectification and stabilization workflow, and applies a new short-dwell version of a common inversion algorithm (cBathy) to demonstrate the utility of short-dwell videos from space providing an initial out-of-the-box assessment of errors for one of the collections, and recommends future avenues of research for improving bathymetric predictions.
  • Application of Coastal Resilience Metrics at Panama City Beach, Florida

    Abstract: This study, for the first time, combines the Coastal Engineering Resilience Index (CERI) and Buffer Width (BW) metrics to better understand the historic, current, and future resilience of the coastal system at Panama City Beach, Florida. After the construction of the US Army Corps of Engineers Coastal Storm Risk Management (CSRM) project at Panama City Beach, the CERI resilience metric has increased up to 21.3%, while negative storm impacts in the same have been less than 8%. The frequency of nourishment efforts moving forward is justified by a 24.3% increase in the BW metric when comparing cases that are nourished frequently with cases that are not nourished frequently. Moreover, there is a 129.2% increase in the BW metric when comparing the frequently nourished cases with the cases that are nourished only on an emergency basis. While the CERI and BW metrics have both been considered previously, their combined application provides an understanding of a broader temporal view of how storm events, CSRM projects, and nourishments have played a part in the resilience of the system at Panama City Beach over the last two decades and how they may play a role in the next half century.
  • USACE Chief of Engineers signs Ponte Vedra Beach CSRM Chief’s Report

    JACKSONVILLE, Fla -- Lt. Gen. Scott A. Spellmon, 55th Chief of Engineers and Commanding General of the U.S. Army Corps of Engineers, signed the Chief’s Report April 18, 2024, for the Ponte Vedra Beach Coastal Storm Risk Management Study Report in a ceremony at USACE Headquarters in Washington, D.C.
  • Coastal Modeling System User’s Manual

    Abstract: The Coastal Modeling System (CMS) is a suite of coupled 2D numerical models for simulating nearshore waves, currents, water levels, sediment transport, morphology change, and salinity and temperature. Developed by the Coastal Inlets Research Program of the US Army Corps of Engineers, the CMS provides coastal engineers and scientists a PC-based, easy-to-use, accurate, and efficient tool for understanding of coastal processes and for designing and managing of coastal inlets research, navigation projects, and sediment exchange between inlets and adjacent beaches. The present technical report acts as a user guide for the CMS, which contains comprehensive information on model theory, model setup, and model features. The detailed descriptions include creation of a new project, configuration of model grid, various types of boundary conditions, representation of coastal structures, numerical methods, and coupled simulations of waves, hydrodynamics, and sediment transport. Pre- and postmodel data processing and CMS modeling procedures are also described through operation within a graphic user interface—the Surface Water Modeling System.
  • Cloud-based Modeling Helps Engineers Predict Coastal Climate Impacts

    BUFFALO, N.Y. — Coastal engineers at the U.S. Army Corps of Engineers, Buffalo District are learning how an online model can help them design and build better structures to protect harbors across lakes Erie and Ontario. With more shoreline than any other U.S. coast, infrastructure and property along the Great Lakes takes a beating from waves every year – especially in winter.
  • USACE, Miami-Dade to host Back Bay Study charrette, public meeting

    USACE and Miami-Dade County will host a charrette Nov. 14-18, including a public meeting Monday, Nov. 14, for the re-initiation of the Miami-Dade Back Bay Coastal Storm Risk Management Feasibility Study. Working teams will conduct analysis and planning beginning with the study's 2021 recommended plan as a starting point. Public participation and input is highly desired and encouraged; the Nov. 14 public meeting will take place from 6-8 p.m. at Miami-Dade College.
  • Practical Guidance for Numerical Modeling in FUNWAVE-TVD

    Purpose: This technical note describes the physical and numerical considerations for developing an idealized numerical wave-structure interaction modeling study using the fully nonlinear, phase-resolving Boussinesq-type wave model, FUNWAVE-TVD (Shi et al. 2012). The focus of the study is on the range of validity of input wave characteristics and the appropriate numerical domain properties when inserting partially submerged, impermeable (i.e., fully reflective) coastal structures in the domain. These structures include typical designs for breakwaters, groins, jetties, dikes, and levees. In addition to presenting general numerical modeling best practices for FUNWAVE-TVD, the influence of nonlinear wave-wave interactions on regular wave propagation in the numerical domain is discussed. The scope of coastal structures considered in this document is restricted to a single partially submerged, impermeable breakwater, but the setup and the results can be extended to other similar structures without a loss of generality. The intended audience for these materials is novice to intermediate users of the FUNWAVE-TVD wave model, specifically those seeking to implement coastal structures in a numerical domain or to investigate basic wave-structure interaction responses in a surrogate model prior to considering a full-fledged 3-D Navier-Stokes Computational Fluid Dynamics (CFD) model. From this document, users will gain a fundamental understanding of practical modeling guidelines that will flatten the learning curve of the model and enhance the final product of a wave modeling study. Providing coastal planners and engineers with ease of model access and usability guidance will facilitate rapid screening of design alternatives for efficient and effective decision-making under environmental uncertainty.
  • A Revisit and Update on the Verification and Validation of the Coastal Modeling System (CMS): Report 1–Hydrodynamics and Waves

    Abstract: This is the first part of a two-part report that revisits and updates the verification and validation (V&V) of the Coastal Modeling System (CMS). The V&V study in this part of the report focuses on hydrodynamic and wave modeling. With the updated CMS code (Version 5) and its latest graphical user interface, the Surface-water Modeling System (Version 13), the goal of this study is to revisit some early CMS V&V cases and assess some new cases on model performance in coastal applications. The V&V process includes the comparison and evaluation of the CMS output against analytical solutions, laboratory experiments in prototype cases, and field cases in and around coastal inlets and navigation projects. The V&V results prove that the basic physics incorporated are represented well, the computational algorithms implemented are accurate, and the coastal processes are reproduced well. This report provides the detailed descriptions of those test simulations, which include the model configuration, the selection of model parameters, the determination of model forcing, and the quantitative assessment of the model and data comparisons. It is to be hoped that, through the V&V process, the CMS users will better understand the model’s capability and limitation as a tool to solve real-world problems.
  • Coastal Resilience: Benefits of Wrack and Dune Systems and Current Management Practices

    Purpose: The purpose of this US Army Engineer Research and Development Center (ERDC) technical note (TN) is to review both the ecological and geomorphological impacts of wrack on dune systems and provide an overview of current beach dune and wrack management practices. As part of the US Army Corps Regional Sediment Management (RSM) Program, this TN also introduces a case study investigating wrack management solutions for dune stabilization.