Abstract: The US Army Corps of Engineers (USACE) conducts regular inspections and maintenance of relief wells to ensure their proper functionality and to identify early signs of malfunction or potential failure. Expenses associated with labor, materials, and transportation are the primary cost drivers of relief-well maintenance. To minimize labor hours and materials, a treatment approach intended to improve logistics and reduce material costs during relief-well treatment was developed and tested. This approach employed external UVC, mechanical brush treatments, and chlorinated-gas-infused water to produce liquid sodium hypochlorite (NaClO). Preliminary bench-scale testing with chlorine, oxalic acid, and UVC informed the selection of field testing methods and optimal amendment concentrations. Field demonstrations were conducted annually over three years. During the demonstrations, the system underwent continuous optimization to enhance its efficiency. Different locations in Mississippi (Grenada Dam, Eagle Lake, and Magna Vista) were selected for testing. Both new and traditional treatment approaches yielded adequate results, achieving microbial reduction at 96% to 100%. The development and refinement of this system demonstrated that relief wells can be treated within a comparable timeframe and with similar efficiency while utilizing fewer purchased chemicals and materials.