Results:
Tag: geology
Clear
  • Geology, Geomorphology, and River Engineering in the Memphis-to-Rosedale Reach, Lower Mississippi River

    Abstract: This study examines the geology and geomorphology of the Mississippi River between Memphis, Tennessee, and Rosedale, Mississippi, with a focus on the Tertiary (65 to 2 million years) surface and how the present-day river has impacted this surface. Previous mapping efforts involving the Tertiary surface by the US Army Corps of Engineers are reviewed. Relevant maps are included as plates herein to facilitate wider dissemination. Today’s channel has deepened through time due to river engineering, which includes oxbow cutoffs and hardening of river banks with revetment and training dikes to prevent uncontrolled bank caving and channel migration. The course of the river was fixed in place by 1962. The thalweg of the river intersects the Tertiary surface at Helena, Arkansas, at the Hardin oxbow cutoff, and near the vicinity of Memphis, Tennessee. At these three locations, the Tertiary surface occurs at shallow elevations and in close proximity to where Tertiary sediments outcrop. A deeply buried alluvial valley is present in the Tertiary surface. Erosion of Jackson Group sediments in this valley exposes the underlying Claiborne Group sediments. Jackson and Sunflower oxbow cutoffs occur in the deepest parts of the alluvial fill.
  • Optimal Transport-Based Full-Waveform Inversion for Shallow Seismic Data

    Abstract: Full-waveform inversion is widely used to reconstruct subsurface properties at different geologic scales. For shallow land applications using surface waves, a lack of information on the source wavelet, dispersion, and presence of higher modes increases the nonlinearity of the inverse problem. The inversion can become more challenging with the presence of near-surface complexities associated with scattering, attenuation, and high-contrast variations in the elastic parameters. Compared with the least-squares formulation, GSOT provides a more convex misfit function and reduces dependence on the accuracy of the initial model. Although a few field-data applications have shown the potential and benefits of using GSOT-based FWI with body waves, there are limited real applications of the inversion with a GSOT misfit function for NS characterization. Despite considerable effort with blind benchmark tests in exploration seismology, typically synthetic FWI examples for NS applications are demonstrated through an “inverse crime” approach. Synthetic FWI examples performed compare the performance of LS- and GSOT-based FWI with more realistic scenarios. We demonstrate the GSOT misfit function improves the initial 1D velocity models and guides the updates toward the actual subsurface properties. This enables the recovery of higher-mode Rayleigh waves and reconstruction of the cavity with better precision.
  • Seismic analysis for Pohnpei Island, Federated States of Micronesia

    Abstract: The purpose of this study was to determine the seismic hazards that can affect Pohnpei Island and provide estimates of the ground motion parameters. The primary parameters are peak ground acceleration (PGA), pseudo-spectral acceleration (PSA), and velocity. These values were determined both probabilistically and deterministically to illustrate the overall seismic hazard to Pohnpei Island. A review was conducted of the technical literature to determine geologic studies that have been performed for characterization of the island’s volcanism, stratigraphy, and tectonism. This report is a desktop study that examines the tectonism of the region, the geology of the island, its geologic history, and its seismic record. No liquefaction areas or tsunami hazards were identified by researchers on the island.
  • Geologist improves field for future professionals

    With the help of advocacy from Dave Becker, a geologist with Huntsville Center's Environmental and Munitions Center of Expertise, Nebraska legislature passed a bill that created licensing and registration along with the requirements to receive professional geologist certification.
  • Digging deeper: Geotechnical team drills down for purpose and discovery in their ‘boring’ jobs

    The geotechnical team boarded the barge before sunrise during a shift change. As they climbed aboard, the drilling crew met them with good news. “Looks like we’re ready to drill this morning,” the crew leader said.
  • Old River Control Complex (ORCC) Low Sill: A Literature Synthesis

    Abstract: The US Army Corps of Engineers (USACE), New Orleans District (MVN), tasked the US Army Engineer and Research Development Center (ERDC) with assessing the condition of a grouted scour hole located at the southeast wall of the Old River Low Sill Structure (ORLSS) at the Old River Control Complex (ORCC) using noninvasive techniques, such as geophysical surveys and physical models. This special report (SR) combines a scientific literature synthesis of previous research with further geologic interpretation as a first step in the overall task assigned by MVN. The results discussed in this SR will be used to inform the interpretation of geophysical surveys, construction of physical models, and input for the slope stability analyses.
  • Legacy Datums and Changes in Benchmark Elevation through Time at the Old River Control Structure, Louisiana

    Abstract: Vertical datums used in the study area at the Old River Control Structure in southern Louisiana have involved Memphis Datum, Mean Gulf Level, Mean Sea Level, Mean Sea Level Datum of 1929, National Geodetic Vertical Datum of 1929, and the North American Vertical Datum of 1988. The focus of this study was to examine historic benchmarks in the study area to determine the magnitude of elevation changes associated with the different legacy datums that have been used by the US Army Corps of Engineers. Comparison of elevation values across these legacy datums has involved examining historic hydrographic surveys, compiling a list of known benchmarks from these surveys, and comparing their elevation values against publications involving spirit-leveling surveys from the Lower Mississippi Valley and the National Geodetic Survey database for benchmarks. This study describes the history of legacy datums, floodplain geology at the Old River Control Structure, potential subsidence impacts affecting the benchmarks, methods for identification and tracking benchmarks, and the results obtained from this study.
  • Employee Spotlight: Geographic Information Systems Specialist Lindsay Barrios

    This month, we’re featuring Geographic Information Systems Specialist Lindsay Barrios. Barrios was born and raised in Fort Payne, Alabama. After graduating from high school, she moved to Tennessee to study geology and geography at the University of Memphis. In February of 2018, Barrios officially became a member of the USACE Memphis District team. She said she was excited to work for the Corps for many reasons, which include the district’s mission as well as the leadership present throughout each of its offices.
  • Automated Characterization of Ridge-Swale Patterns Along the Mississippi River

    Abstract: The orientation of constructed levee embankments relative to alluvial swales is a useful measure for identifying regions susceptible to backward erosion piping (BEP). This research was conducted to create an automated, efficient process to classify patterns and orientations of swales within the Lower Mississippi Valley (LMV) to support levee risk assessments. Two machine learning algorithms are used to train the classification models: a convolutional neural network and a U-net. The resulting workflow can identify linear topographic features but is unable to reliably differentiate swales from other features, such as the levee structure and riverbanks. Further tuning of training data or manual identification of regions of interest could yield significantly better results. The workflow also provides an orientation to each linear feature to support subsequent analyses of position relative to levee alignments. While the individual models fall short of immediate applicability, the procedure provides a feasible, automated scheme to assist in swale classification and characterization within mature alluvial valley systems similar to LMV.
  • Framework Geology of Cape Shoalwater and Northwest Willapa Bay, Washington: Assessing Potential Geologic Impacts on Recent Shoreline Change

    Abstract: The shoreline along Cape Shoalwater and northwest Willapa Bay has experienced the highest rates of erosion along the entire Pacific Coast of the United States, due in part to rapid northward migration of the navigation channel. Recently, channel migration and shoreline erosion in this region have slowed, but the cause of this relative stabilization, and thus the longevity of these new patterns, is unknown. Given the complex neotectonics and geologic framework of the southern coast of Washington, it is possible that underlying, erosion-resistant geologic units have become exposed along the channel and/or in the nearshore, and are acting to reduce or halt channel migration and/or shoreline erosion. Conversely, the apparent reduction may be due to subtle, short-term changes in regional hydrodynamics and/or sediment transport, and thus future rates of channel migration and/or shoreline erosion might increase back to historical rates. The purpose of this special report is to detail the geologic and neotectonic framework of the northern Willapa Bay region, and determine how the underlying framework geology might be impacting channel stability and adjacent shoreline erosion rates. Suggested research questions to quantify potential geologic control are also presented, including the potential benefits of the research to the district.