U.S. Army Corps of Engineers announces publication of 2026 nationwide permits
Jan. 08, 2026 | 
News Release
The U.S. Army Corps of Engineers announced today the publication of the 2026 nationwide permits in the Federal Register. The 56 reissued and one new...
Read More
U.S. Army Corps of Engineers announces finalization of nationwide permits
Jan. 07, 2026 | 
News Release
The U.S. Army Corps of Engineers announced today that it will reissue 56 existing nationwide permits and issue one new permit for work in wetlands and...
Read More
A Soldier and three other civilian men document events in an airfield tower.
USACE Black Start Exercise Brings Light to Readiness
Nov. 20, 2025 | 
News
Increased installation readiness is the goal of the Black Start Exercise Program, a joint U.S. Army Corps of Engineers-led initiative, to test and...
Read More
Army Executes POTUS Directive on Ambler Road Project
Oct. 23, 2025 | 
News Release
President Donald J. Trump has approved the appeal of the Alaska Industrial Development and Export Authority (AIDEA), directing the U.S. Army Corps of...
Read More
USACE introduces new Regulatory Request System module
Sep. 22, 2025 | 
News Release
The U.S. Army Corps of Engineers announced today the launch of a new “No Permit Required” module on its Regulatory Request System (RRS), an innovative...
Read More
Army Corps of Engineers begins implementing policy to increase America’s energy generation efficiency
Sep. 22, 2025 | 
News Release
Assistant Secretary of the Army for Civil Works Adam Telle today directed the U.S. Army Corps of Engineers to weigh whether energy projects that might...
Read More

HQ USACE News

Results:
Archive: April, 2020
Clear
  • April

    Space Force Marks 25 Years of GPS

    The Global Positioning System, better known as GPS, marks its 25th year of operation Apr. 27, 2020. On this date in 1995, the system reached full operational capability, meaning the system met all performance requirements. U.S. Air Force Space Command formally announced the milestone three months later.
  • New York and New Jersey Harbor Anchorages Study takes crucial step

    A U.S. Army Corps of Engineers study aimed at improving navigation and generating transportation-cost savings for deep-draft ships using New York and New Jersey Harbor terminals reached a key milestone Thursday.
  • Army awards Harris with Lean Six Sigma Master Black Belt

    Harris is the 163rd member to be awarded Master Black Belt in the Army and currently one of six Corps of Engineers’ MBBs since the Army Lean Six Sigma deployment began in 2005.
  • Navy Officer Helps USACE Create Alternate Care Facility For COVID-19 Patients

    While most of the workforce of Naval Support Activity (NSA) Crane has been safely teleworking for the last month due to the novel coronavirus (COVID-19) pandemic, one naval officer has volunteered to support the nation by going to some of the hardest hit areas in the country.

News/News Release Search

@USACEHQ

Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
X
46,765
Follow Us

News Releases

Results:
Archive: April, 2020
Clear
  • PUBLICATION NOTICE: Analysis of Snow Water Equivalent Annual Maxima in the Upper Connecticut River Basin Using a Max-Stable Spatial Process Model

    Abstract: Recent advances from the science of spatial extremes and model regularization were applied to develop areal-based extremes of snow water equivalent (SWE) data for the upper Connecticut River Basin. Development of areal-based SWE exceedance probability estimates are of relevance for cool season probabilistic flood hazard analyses (PFHA). The approach profiled in this case study is applicable for other hydrometeor-ological variables of relevance to PFHA. The methodology conforms with Extreme Value Theory (EVT) for the analysis of spatial extremes; hence, there is a firm theoretical basis for extrapolation. Trend surface development is guided by EVT theory and recent advances for regularizing general linear models. R, a free software environment for statistical computing and graphics, and QGIS, a free and open-source geographic information system, were the primary tools used for product development and delivery. The following R software packages were primarily used during project execution: evd, Glmnet, maps, raster, rgdal, SDMTools, sp, and SpatialExtremes. R software packages exist in the public domain and support PFHA analyses of varying complexities. Their application herein is not an endorsement or recommendation. It is recommended that one would need to evaluate any particular R software package regarding its suitability for use for any specific application.
  • PUBLICATION NOTICE: Effects of Boric Acid and Water Content on Fundamental Properties of Proprietary Magnesium Phosphate Cement (MPC) Products

    Abstract: Magnesium phosphate cements (MPCs) have been used for decades in proprietary products for pavement repairs. However, products with high exothermic temperatures have short working times, and research is needed to overcome these unfavorable characteristics. The effects of different boric acid and water contents on the fundamental properties of concrete was investigated through 34 trial batch modifications on the following commercially available MPC products: (1) Premier Magnesia’s PREMag PGDM, (2) BASF Master Builder’s MasterEmaco T545, and (3) CeraTech Inc.’s Pavemend TR. Overall results indicated that the increase of boric acid and water content produced favorable decreased temperatures and increased set times but retardation in the early age development of compressive strength. Modifications in the PREMag PGDM product resulted in poor workability, inaccurate time of setting due to a thixotropic nature, and unacceptable compressive strength loss. The Pavemend TR product was significantly affected by the addition of boric acid resulting in nonrecoverable compressive and bond strength loss, excessive expansions, failure at low freezing and thawing cycles, and unacceptable times of setting for rapid-repair applications. The T545 product showed promising performance with 28-day recovery in compressive, flexural, and bond strengths and minimal differences in other properties when compared to the control mixture.
  • PUBLICATION NOTICE: Preliminary Assessment of Landform Soil Strength on Glaciated Terrain in New Hampshire

    Abstract: Accurate terrain characterization is important for predicting off-road vehicle mobility. Soil strength is a significant terrain characteristic affecting vehicle mobility. Collecting soil strength measurements is laborious, making in-situ observations sparse. Research has focused on providing soil strength estimates using remote sensing techniques that can provide large spatial and temporal estimates, but the results are often inaccurate. Past attempts have quantified the soil properties of arid environments using landform assessments; yet many military operating environments occupy high latitude regions with landscapes dominated by glacial deposits. This study took preliminary strength measurements for glacial landforms deposited from the Laurentide Ice Sheet in New England. A range of common glacial landforms were sampled to assess shear strength, bearing capacity, and volumetric moisture content. Glacial outwash landforms had the highest average shear strengths, glacial deltas the lowest. There was a significant negative correlation between silt content and shear strength of the soil, a significant positive correlation between bearing capacity and clay content, and a significant negative correlation with sand content. Moisture content of soils was inversely correlated to the abundance of gravel in the deposit. This work provides initial insight to this approach on glaciated terrain, but continued sampling will provide more robust correlations.
  • PUBLICATION NOTICE: Improved Vehicle Mobility by Using Terrain Surfacing Systems

    Abstract: Even for military vehicles designed with superior off-road capabilities, problematic soil conditions can impede mobility, particularly when many vehicles need to traverse the same path. Loose sands with little shear strength or wet silts or clays with little bearing capacity can deform rapidly under traffic. U.S. Army Engineer Research and Development Center researchers conducted field testing over several terrain conditions to measure performance of terrain surfacing systems designed to improve vehicle mobility. Soil conditions included poorly-graded sand, medium-strength silt, weak marsh, and two different slope conditions. Five different terrain surfacing, or matting systems, were tested that included four commercial variants and one U.S. government design. All testing took place at the ERDC Ground Vehicle Terrain Surfacing Test Facility in Vicksburg, Mississippi. Military test vehicles included a Marine Tactical Vehicle Replacement, Common Bridge Transporter, and M1 Abrams tank. Results from the testing showed that all matting systems provided notable improvement in the number of allowable vehicle passes over soft sands. Results varied for the different systems over weaker soils, with performance improved for those matting systems having thicker and stiffer panels. However, improved performance among matting systems came with a sacrifice of increased logistical burden. Data presented here-in include detailed site characteristics and soil deformation as a function of traffic.

Mississippi Valley Division