News Stories

Results:
Tag: US Army Engineer Research and Development Cente
Clear
    • No Items.

News Releases

Results:
Tag: US Army Engineer Research and Development Cente
Clear
  • PUBLICATION NOTICE: Preliminary Assessment of Landform Soil Strength on Glaciated Terrain in New Hampshire

    Abstract: Accurate terrain characterization is important for predicting off-road vehicle mobility. Soil strength is a significant terrain characteristic affecting vehicle mobility. Collecting soil strength measurements is laborious, making in-situ observations sparse. Research has focused on providing soil strength estimates using remote sensing techniques that can provide large spatial and temporal estimates, but the results are often inaccurate. Past attempts have quantified the soil properties of arid environments using landform assessments; yet many military operating environments occupy high latitude regions with landscapes dominated by glacial deposits. This study took preliminary strength measurements for glacial landforms deposited from the Laurentide Ice Sheet in New England. A range of common glacial landforms were sampled to assess shear strength, bearing capacity, and volumetric moisture content. Glacial outwash landforms had the highest average shear strengths, glacial deltas the lowest. There was a significant negative correlation between silt content and shear strength of the soil, a significant positive correlation between bearing capacity and clay content, and a significant negative correlation with sand content. Moisture content of soils was inversely correlated to the abundance of gravel in the deposit. This work provides initial insight to this approach on glaciated terrain, but continued sampling will provide more robust correlations.
  • PUBLICATION NOTICE: Improved Vehicle Mobility by Using Terrain Surfacing Systems

    Abstract: Even for military vehicles designed with superior off-road capabilities, problematic soil conditions can impede mobility, particularly when many vehicles need to traverse the same path. Loose sands with little shear strength or wet silts or clays with little bearing capacity can deform rapidly under traffic. U.S. Army Engineer Research and Development Center researchers conducted field testing over several terrain conditions to measure performance of terrain surfacing systems designed to improve vehicle mobility. Soil conditions included poorly-graded sand, medium-strength silt, weak marsh, and two different slope conditions. Five different terrain surfacing, or matting systems, were tested that included four commercial variants and one U.S. government design. All testing took place at the ERDC Ground Vehicle Terrain Surfacing Test Facility in Vicksburg, Mississippi. Military test vehicles included a Marine Tactical Vehicle Replacement, Common Bridge Transporter, and M1 Abrams tank. Results from the testing showed that all matting systems provided notable improvement in the number of allowable vehicle passes over soft sands. Results varied for the different systems over weaker soils, with performance improved for those matting systems having thicker and stiffer panels. However, improved performance among matting systems came with a sacrifice of increased logistical burden. Data presented here-in include detailed site characteristics and soil deformation as a function of traffic.
  • PUBLICATION NOTICE: Laboratory Characterization of Rapid-Setting Flowable Fill

    Abstract: Utility Fill One-Step 750® is a rapid-setting flowable fill product that has previously been validated in numerous full-scale demonstrations as an expedient backfill solution for Rapid Airfield Damage Recovery. Although the field performance of Utility Fill One-Step 750® has been extensively documented, a full laboratory characterization has not been conducted. This report analyzes and documents results from several laboratory tests conducted at two water to-product ratios. The tests conducted are based on the suite of tests that make up the triservice spall repair certification program used for rapid-setting concrete products. Tests include strength and set time-related properties, typical parameter control tests for concrete, and tests to determine the mineralogy and chemical makeup of the material. Long-term expansion and contraction properties were also tested. The data presented herein are intended to provide an overall assessment of Utility Fill One-Step 750® and to provide reasonable estimates of various design parameters. The results can be used as a basis for the future development of a formal laboratory certification protocol to down-select other rapid-setting flowable fill products for further evaluation.
  • PUBLICATION NOTICE: Application of Chirp Acoustic Sub-Bottom Data in Riverine Environments: Identification of Underlying Rocky Hazards at Cape Girardeau, Missouri, and Thebes, Illinois

    NOTE: A revised version of the report MRG&P Report No. 31 has been published. While the link below remains valid, the PDF attached to the record is new. It is now 47 pages instead of 45 pages after the changes made. Please update your records as needed.
  • PUBLICATION NOTICE: Lake Providence to Old River Geomorphology Assessment

    Abstract: This report integrates information from previous geomorphic studies coupled with new analysis to provide a comprehensive geomorphic characterization of the Lake Providence (River Mile [RM] 487.2 Above Head of Passes [AHP]) to Old River Control Complex, (RM 317 AHP) reach from the early-1800s to present. Individual components of this study included the following: historical geomorphic studies, development of an events timeline, specific gage records, stage and flow duration trends, trends in water surface slopes, bed material studies, suspended sediment data, channel geometry data, and effects of channel improvement features (cutoffs, dike, revetment, and dredging). These individual assessments were consolidated to develop an overall assessment of how the study reach has evolved since the early-1800s.

Mississippi Valley Division

Institute for Water Resources

South Pacific Division

News/News Release Search

@USACEHQ

Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
X
46,801
Follow Us