News Stories

Results:
Tag: Detectors
Clear
    • No Items.

News Releases

Results:
Tag: Detectors
Clear
  • PUBLICATION NOTICE: Spatial and Temporal Variance in the Thermal Response of Buried Objects

    ABSTRACT:  Probability of detection and false alarm rates for current military sensor systems used for detecting buried objects are often unacceptable. One approach to increasing sensor performance and detection reliability is to better understand which physical processes are dominant under certain environmental conditions. Incorporating this understanding into detection algorithms will improve detection performance. Our approach involved studying a small, 3.05 × 3.05 m, test plot at the Engineer Research and Development Center’s Cold Regions Research and Engineering Laboratory (ERDC-CRREL) in Hanover, New Hampshire. There we monitored a number of environmental variables (soil temperature moisture, and chemistry as well as air temperature and humidity, cloud cover, and incoming solar radiation) coupled with thermal infrared and electro-optical image collection. Data collection occurred over 4 months with measurements made at 15 minute intervals. Initial findings show that significant spatial and thermal temporal variability is caused by incoming solar radiation; meteorologically driven surface heat exchange; and subsurface-soil temperatures, density, moisture content, and surface roughness.
  • PUBLICATION NOTICE: Optimized Low Size, Weight, Power and Cost (SWaP-C) Payload for Mapping Interiors and Subterranean on an Unmanned Ground Vehicle

    ABSTRACT: Section 3 of the FY15 Force 2025 Maneuvers Annual Report indicates that in Dense Urban Areas (DUA), specifically in a subsurface, surface, or super-surface structure, the ability to identify threats will be diminished. Most commercially available LIght Detection And Ranging (LIDAR) systems are specifically designed for high-resolution aerial imaging and mapping applications. As a result, they tend to be large, heavy, power-hungry, data bandwidth intensive, and expensive. They also employ lasers that are not typically eye-safe, which limits their overall effectiveness in subterranean and the interiors of subsurface or super-surface structures. However, due to recent advances in the automotive industry, there are new generations of Size, Weight, Power, and Cost (SWaP-C) sensors that are eye-safe, making them suitable for use indoors and in subterranean environments. While these tradeoffs limit their effective use to hundreds of meters (compared to kilometers for their more expensive counterparts), they are ideal candidates for use in subterranean and building interiors. While cameras fill this niche to some extent, the volumetric calculations provided by these sensors provide additional intelligence to shape the security of the environment and offer more precision when maneuvering troops. These sensors would provide the warfighter with situational understanding in previously inaccessible locations. Therefore, to aid in the Army’s need to obtain and maintain situational understanding in DUAs, the authors propose utilizing low size, weight, power, and cost (SWaP-C) sensors, on a robot platform, for surveying and mapping underground structures and building interiors. Rapid/near real-time data processing is possible by utilizing open-source software and commercial off the shelf (COTS) components. Using the preferred sensor payload autonomously was also explored.

Mississippi Valley Division

Institute for Water Resources

South Pacific Division

News/News Release Search

@USACEHQ

Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
X
46,802
Follow Us