Results:
Tag: dredging
Clear
  • Improving Aquatic Placement Practices for Beneficial Use of Dredged Material in the Great Lakes

    Abstract: The Great Lakes Navigation System is an economically critical waterway. To maintain safe and navigable waterways, approximately 3–5 million yd3 (2.3–3.8 million m3) of sediments are dredged annually. The US Army Corps of Engineers (USACE) and others now recognize that beneficial use of these sediments can achieve positive economic, environmental, and social outcomes. However, historically less than 25% of dredged sediments have been beneficially used in the nearshore environment. Improvements are needed in dredged material management practices in the Great Lakes to achieve the goal of using 70% of dredged sediments beneficially by 2030. Therefore, to overcome these challenges this report reviews beneficial use of dredged material projects with the goal of improving and in-creasing beneficial-use-placement practices in the Great Lakes. Identified needs to advance beneficial-use placement in the Great Lakes include the following: (1) improved modeling of sediment-placement methods; (2) better documentation regarding the cost, benefits, and drawbacks of various placement methods; (3) demonstration of some sediment-placement techniques used successfully in other coastal environments; and (4) monitoring before and after conditions, particularly for sediments that contain greater than 10% fines. Several demonstration projects should be implemented to obtain information addressing the data gaps.
  • “Essayons Isle”

    JACKSONVILLE, Fla. - The U.S. Army Corps of Engineers’ (USACE) Jacksonville District helms the voyage as Skipper, navigating its Intracoastal Waterway to provide a unique, in-person perspective on locations where they, in collaboration with their stakeholder shipmates, are researching the most feasible ways to protect America’s oldest city against coastal flooding.
  • City of Wabasha, Minnesota, Corps of Engineers continue river sand management partnership with trucking operation this fall

    The U.S. Army Corps of Engineers, St. Paul District, and the city of Wabasha, Minnesota, are again working together to manage river sand dredged from the Mississippi River.
  • Beneficial Use of Dredged Sediment in South St. Paul, Minnesota: 100 Years of Economic, Social, and Environmental Innovation

    Purpose: This technical note provides a review of beneficial use (BU) of dredged sediment in a 5-mile river reach of the Upper Mississippi River System (UMRS) that demonstrates the triple-win solutions championed by the US Army Corps of Engineers (USACE) Engineering With Nature® Program. Several case studies exemplifying the BU of dredged sediment are presented along with a more in-depth review of the Pigs Eye Lake Islands ecosystem restoration project.
  • Enter Sand Plan: USACE and sponsor ports invite public comments on draft Dredged Material Management Plan

    The U.S. Army Corps of Engineers (USACE) and Columbia River ports are asking for public comment on the draft plan to place millions of cubic yards of clean, Columbia River sediment in multiple Oregon and Washington locations.
  • Next-Generation Water Quality Monitoring during Dredging Operations: Knowns, Unknowns, and Path Forward

    Abstract: Water quality monitoring data are routinely collected during dredging and placement operations to address various state and federal requirements, including water quality standards, with the intention of protecting ecosystem health. However, such efforts may be limited by the lack of a standardized national strategic focus and user-friendly streamlined interfaces to interpret the data. Inconsistencies in how and what data are collected and lack of consensus on scientifically backed biological-effects thresholds make it difficult to quantify potential dredging operations impacts (or lack thereof) both within individual projects over time and across multiple projects of differing characteristics. Summarized herein is an initial effort to define a scientifically backed path forward to improve the value of current and future water quality monitoring and management decisions based on water quality data collected. The provided turbidity data were generally below applicable state thresholds for two case studies but for a third case study did periodically exceed thresholds at depth. This includes providing rationale for strategic focus on the most relevant dredging operations and projects, based on three general site-specific data categorizations: (1) sediment type, (2) dredge type, and (3) ecosystem type.
  • Application of Existing Tools to Systematically Identify Nearshore Placement Sites for Beneficial Use of Navigation Sediments in Lake Michigan

    Purpose: The Great Lakes includes 140 federally maintained harbors with an annual dredging program of 2–4 million cubic meters (3–5 million cubic yards)[1] of sediment. Many small harbors are not dredged regularly, and there is an undredged backlog of over 9 million cubic meters (12 million cubic yards) of sediment (USACE-LRD 2021). Current policy (Spellmon 2023) is to maximize the beneficial use (BU) of sediment, with a goal of beneficially reusing 70% of the federal navigation dredging volume by 2030 (that is, the 70/30 goal). In the Great Lakes, clean sands have often been placed on beaches or in the nearshore littoral zone to beneficially nourish the shoreline, but since many harbors are not dredged regularly, no plans exist to beneficially reuse dredged sediments. This lack of existing BU plans is particularly true for harbors with finer grained or mixed sediment. To achieve the 70/30 BU goal and support navigation maintenance and coastal management requires a strategic and systematic approach to identifying BU sites. The purpose of the technical note is to (1) provide an approach to identify potential nearshore placement sites using existing information and models; (2) describe available tools for placement site identification, coastal condition information, and the long-term fate of the sediment; and (3) provide a pertinent case study to describe this approach in practice.
  • Kings Bay Naval Submarine Base Beneficial Use of Dredge Material Study

    Efforts are underway to understand the coastal marsh system surrounding the Kings Bay Naval Submarine Base.
  • Army Corps begins Swinomish maintenance dredging Sept. 9

    U.S. Army Corps of Engineers' routine maintenance dredging in Swinomish Channel, a federal navigation channel located between the eastern shore of Fidalgo Island and the mainland at the western edge of Skagit County, Washington, is scheduled to begin Sept. 9, 2024.
  • USACE shares update on dredging schedule for Manasquan Inlet

    The U.S. Army Corps of Engineers (USACE) Philadelphia District shared an update regarding navigation at the Manasquan Inlet in New Jersey.