Abstract: This project explores electrospinning (ES) as one of the most successful technologies to produce nanofiber materials. Electrospun nanofibers are used in various military technologies, including advanced filtration systems, impact-resistant protective gear, thermal insulation, radar absorption for camouflage and stealth, antimicrobial wound dressings, drug-delivery patches, rapid healing, efficient solar cells, and self-cleaning materials for regeneration. Researchers at the US Army Engineer Research and Development Center (ERDC) investigated electrospinning effects on morphology, crystallinity and distribution of metal oxides for photocatalytic activities, and magnetic and mechanical properties in reinforcing composites.
This study includes the following fabricated electrospun mats:
-iron and titanium oxide (Fe3O4 and TiO2) with polyvinyl alcohol (PVA)
-graphene, graphene oxide, and reduced graphene oxide with polyvinylidene fluoride (PVDF)
-graphene-polyacrylonitrile (PAN)
-metal-organic frameworks (MOF), graphene-MXene with PAN
The research presented herein includes electrospinning theory, process, and parameters; sol–gel technology in solution preparation; and electrospinning sample characterization to guide readers in the fabrication of electrospun fibers with targeted characteristics. Future studies explore electrospun MOFs and MXene, a class of two-dimensional inorganic compounds with transition metal carbides, nitrides, or carbonitrides composites. These studies are invaluable for advancing military programs and enhancing warfighter support and civil works.