U.S. Army Corps of Engineers announces publication of 2026 nationwide permits
Jan. 08, 2026 | 
News Release
The U.S. Army Corps of Engineers announced today the publication of the 2026 nationwide permits in the Federal Register. The 56 reissued and one new...
Read More
U.S. Army Corps of Engineers announces finalization of nationwide permits
Jan. 07, 2026 | 
News Release
The U.S. Army Corps of Engineers announced today that it will reissue 56 existing nationwide permits and issue one new permit for work in wetlands and...
Read More
A Soldier and three other civilian men document events in an airfield tower.
USACE Black Start Exercise Brings Light to Readiness
Nov. 20, 2025 | 
News
Increased installation readiness is the goal of the Black Start Exercise Program, a joint U.S. Army Corps of Engineers-led initiative, to test and...
Read More
Army Executes POTUS Directive on Ambler Road Project
Oct. 23, 2025 | 
News Release
President Donald J. Trump has approved the appeal of the Alaska Industrial Development and Export Authority (AIDEA), directing the U.S. Army Corps of...
Read More
USACE introduces new Regulatory Request System module
Sep. 22, 2025 | 
News Release
The U.S. Army Corps of Engineers announced today the launch of a new “No Permit Required” module on its Regulatory Request System (RRS), an innovative...
Read More
Army Corps of Engineers begins implementing policy to increase America’s energy generation efficiency
Sep. 22, 2025 | 
News Release
Assistant Secretary of the Army for Civil Works Adam Telle today directed the U.S. Army Corps of Engineers to weigh whether energy projects that might...
Read More

HQ USACE News

Results:
Tag: Sedimentation and deposition
Clear
    • No Items.

News/News Release Search

@USACEHQ

Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
X
46,742
Follow Us

News Releases

Results:
Tag: Sedimentation and deposition
Clear
  • PUBLICATION NOTICE: Application of Chirp Acoustic Sub-Bottom Data in Riverine Environments: Identification of Underlying Rocky Hazards at Cape Girardeau, Missouri, and Thebes, Illinois

    NOTE: A revised version of the report MRG&P Report No. 31 has been published. While the link below remains valid, the PDF attached to the record is new. It is now 47 pages instead of 45 pages after the changes made. Please update your records as needed.
  • PUBLICATION NOTICE: Analysis of Nearshore Placement of Sediments at Ogden Dunes, Indiana

    ABSTRACT: The harbor structures/shoreline armoring on the southern Lake Michigan shoreline interrupt sand migration. Ogden Dunes, Indiana, and the nearby Indiana Dunes National Lakeshore observed shoreline erosion due to engineered structures associated with Burns Waterway Harbor (east of Ogden Dunes) impeding natural east-to-west sediment migration. To remedy this, USACE placed over 450,000 cubic meters (m3) of dredged material post-2006 in the nearshore of Ogden Dunes. However, the effectiveness of nearshore placements for shoreline protection and littoral nourishment is not fully established. To improve nearshore placement effectiveness, USACE monitored the June/July 2016 placement and subsequent movement of 107,000 m3 of dredged material in the nearshore region at Ogden Dunes. This involved an extensive monitoring scheme (three bathymetry surveys, and two acoustic Doppler current profiler deployments), a Coastal Modeling System (CMS) numerical model of the changes following placement, and a prediction of sediment transport direction using the Sediment Mobility Tool (SMT). The SMT-predicted sediment migration direction was compared to observations. Observations indicated that between 10/11/2016 and 11/15/2016 the centroid of the sediment above the pre-placement survey moved 17 m onshore. These observations agreed with SMT predictions — onshore migration under storm and typical wave conditions. CMS accurately reproduced the hydrodynamic features.
  • PUBLICATION NOTICE: Application of Chirp Acoustic Sub-Bottom Data in Riverine Environments: Identification of Underlying Rocky Hazards at Cape Girardeau, Missouri, and Thebes, Illinois

    ABSTRACT: Shallow acoustic reflection (chirp) data have been utilized to map the elevation of underlying stratigraphy in a wide range of aqueous environments. Of particular concern in riverine regions is the elevation of near-surface underlying rock that, if exposed during normal migration of sedimentary bedforms, can cause grounding and damage to vessels transiting the region during periods of low water. Given the ephemeral nature of the rock’s exposure, traditional surveying methods are insufficient to map rock when it is covered by a thin veneer of sediment, increasing the potential hazard. Accordingly, the US Army Corps of Engineers, St. Louis District, (MVS) explored the use of chirp sub-bottom surveys to identify buried rock within the Mississippi River in the vicinity of Cape Girardeau, MO, and Thebes, IL. Hazard maps showing the distribution of buried rock were generated, and the base of the mobile sediment layer was identified where possible. These data will allow MVS to accurately identify potentially hazardous regions during periods of low water. Although the study did not result in the complete mapping of all near-surface geologic hazards, regions that warrant further study are identified, and modifications to the original survey plan are provided to improve the accuracy of future data collection efforts.
  • PUBLICATION NOTICE: Bed-Load Transport Measurements on the Chippewa River Using the ISSDOTv2 Method

    PURPOSE: This Regional Sediment Management (RSM) Technical Note (TN) provides information on bed-load measurements obtained on the Chippewa River, Wisconsin, in the spring of 2018. The ISSDOTv2 method was developed by the U.S. Army Corps of Engineers (USACE), Engineering Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL), River and Estuarine Engineering Branch. The method uses time-sequenced bathymetric data to determine a bed-load transport rate. When transport rates are obtained with concurrent flow-rate data, it is possible to develop bed-load rating curves. Such rating curves are extremely valuable in forecasting or hindcasting bed-load sediment delivery for the location at which the data were obtained. This is very important for river managers in developing sediment budgets and in the planning of dredging operations.  In the present study, the USACE Mississippi Valley Division (MVD), St. Paul District (MVP), had contracted with the U.S. Geological Survey (USGS) for real-time monitoring of suspended-sediment concentrations (suspended sand load and bed-load sediment) on the lower Chippewa River, a major source and contributor of sand-sized sediment to the Upper Mississippi River (UMR). The bed-load values obtained using ISSDOTv2 are presented in this RSM TN.

Mississippi Valley Division