Abstract: The US Army Corps of Engineers completed the South Atlantic Coastal Study (SACS) to quantify storm surge and wave hazards, allowing for the expansion of the Coastal Hazards System (CHS) to the South Atlantic Division (SAD) domain. The goal of CHS-SACS was to quantify storm hazards for present conditions and future sea level rise scenarios to reduce flooding risk and increase resiliency in coastal environments. CHS-SACS was completed for three regions within the SAD domain, and this report focuses on the South Atlantic (CHS-SA). This study applied the CHS’ Probabilistic Framework with Joint Probability Method Augmented by Metamodeling Prediction (JPM-AMP) to perform a probabilistic coastal hazard analysis (PCHA) of tropical cyclone (TC) and extratropical cyclone (XC) responses, leveraging new atmospheric and hydrodynamic numerical model simulations of synthetic TCs and historical XCs. This report documents the CHS probabilistic framework to perform the PCHA for CHS-SA by executing the JPM-AMP, including storm climate characterization, storm sampling, storm recurrence rate estimation, marginal distributions, correlation and dependence structures of TC atmospheric-forcing parameters, development of augmented storm suites, and assignment of discrete storm weights to the synthetic TCs. Coastal hazards were estimated for annual exceedance frequencies over the range of 10 yr−1 to 10−4 yr−1.