HQ USACE NEWS RELEASES

News Stories

Results:
Tag: Cities and towns
Clear
    • No Items.

News Releases

Results:
Tag: Cities and towns
Clear
  • PUBLICATION NOTICE: The Urban Ground-to-Ground Radio-Frequency Channel: Measurement and Modeling in the Ultrahigh Frequency Band

    ABSTRACT:  Ground-to-ground radio communication and sensing within the urban environment is challenging because line of sight between transmitter and receiver is rarely available. Therefore, radio links are often critically reliant on reflection and scattering from built structures. Little is known about the scattering strength of different buildings or whether such differences are important to the urban ground-to-ground channel. We tested the hypotheses that (1) diffuse scattering from built structures significantly impacts the urban channel and (2) scattering strength of urban structures varies with surface roughness and materials.  We tested these hypotheses by measuring urban channels in Concord, New Hampshire, and Boston, Massachusetts, and via channel-modeling efforts with three-dimensional representations of the urban environment. Direct comparison between measured and modeled channels suggest that both of these hypotheses are true. Further, it appears that ray-tracing approaches underestimate the complexity of urban channels because these approaches lack the physical processes to correctly assess the power incident on and scattered from built structures. We developed a radio-geospatial model that better accounts for incident power on both directly visible and occluded buildings and show that our model predictions com-pare more favorably with measured channels than those channels predicted via typical ray-tracing approaches.
  • PUBLICATION NOTICE: Optimized Low Size, Weight, Power and Cost (SWaP-C) Payload for Mapping Interiors and Subterranean on an Unmanned Ground Vehicle

    ABSTRACT: Section 3 of the FY15 Force 2025 Maneuvers Annual Report indicates that in Dense Urban Areas (DUA), specifically in a subsurface, surface, or super-surface structure, the ability to identify threats will be diminished. Most commercially available LIght Detection And Ranging (LIDAR) systems are specifically designed for high-resolution aerial imaging and mapping applications. As a result, they tend to be large, heavy, power-hungry, data bandwidth intensive, and expensive. They also employ lasers that are not typically eye-safe, which limits their overall effectiveness in subterranean and the interiors of subsurface or super-surface structures. However, due to recent advances in the automotive industry, there are new generations of Size, Weight, Power, and Cost (SWaP-C) sensors that are eye-safe, making them suitable for use indoors and in subterranean environments. While these tradeoffs limit their effective use to hundreds of meters (compared to kilometers for their more expensive counterparts), they are ideal candidates for use in subterranean and building interiors. While cameras fill this niche to some extent, the volumetric calculations provided by these sensors provide additional intelligence to shape the security of the environment and offer more precision when maneuvering troops. These sensors would provide the warfighter with situational understanding in previously inaccessible locations. Therefore, to aid in the Army’s need to obtain and maintain situational understanding in DUAs, the authors propose utilizing low size, weight, power, and cost (SWaP-C) sensors, on a robot platform, for surveying and mapping underground structures and building interiors. Rapid/near real-time data processing is possible by utilizing open-source software and commercial off the shelf (COTS) components. Using the preferred sensor payload autonomously was also explored.

Mississippi Valley Division

Institute for Water Resources

South Pacific Division

News/News Release Search

@USACEHQ

Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
Twitter
Logo
X
46,620
Follow Us