Abstract: Previous to 1993 Hydraulic Steel Structures (HSS) were designed using Allowable Stress Design (ASD); modern design, has transitioned to Load and Resistance Factor Design (LRFD) method, which targets a probability of a limit state. To implement LRFD, an understanding of the probability distributions of the loads applied to the structure, the resistances of the components of the structure, and the approximate durations and overlapping of these loads must be determined. The loads applied to HSS are dissimilar to loads applied to buildings or roads, so existing distributions cannot be applied to this problem. Any attempts to implement LRFD without these distributions will result in designs that do not target the probability of reaching a limit state. The USACE has adapted LRFD load combinations and factors to encompass the different geometry, force and displacement conditions, and environments present in HSS. This work collects literature for load effects on HSS to determine either probabilistic distributions or what loads sufficiently unknown to necessitate new research. Because the loads the HSS are subject to are dissimilar to other designed structures, these load distributions cannot be taken from them directly. Loads considered are hydrodynamic, barge impacts, debris impacts, ice expansion, seismic, wind, and waves.