Abstract: Low-water crossings (LWCs) are critical components of DoD infrastructure in Alaska and other cold regions, yet their effective siting, design, construction, and maintenance are challenged by remote locations, limited environmental data, seasonal hydrology, and complex terrain. Harsh winter conditions, rapid spring melt, and freeze–thaw cycles introduce hazards such as ice-related scour, debris loading, and variable streambed stability. In cold-region operational areas, natural processes such as permafrost degradation, shifting hydrologic regimes, and sudden flood events from glacial or thermokarst activity further increase risk to infrastructure performance and longevity. This report addresses these challenges by consolidating best practices and mitigation strategies for LWC implementation in cold environments. Drawing on technical literature, input from land managers, and existing agency standards and SOPs, the report identifies key considerations for improving LWC resilience. These include accounting for ice forces, complex geotechnical challenges, sediment transport, and the use of appropriate materials to name a few. By framing LWCs within a systems-based approach to site selection and engineering design, the report provides guidance for supporting safe and sustainable operations across Arctic and Subarctic training environments. It serves as a technical resource for DoD planners and engineers tasked with managing infrastructure in cold regions.