Results:
Tag: flood control
Clear
  • Wave Attenuation of Coastal Mangroves at a Near-Prototype Scale

    Abstract: A physical model study investigating the dissipation of wave energy by a 1:2.1 scale North American red mangrove forest was performed in a large-scale flume. The objectives were to measure the amount of wave attenuation afforded by mangroves, identify key hydrodynamic parameters influencing wave attenuation, and provide methodologies for application. Seventy-two hydrodynamic conditions, comprising irregular and regular waves, were tested. The analysis related the dissipation to three formulations that can provide estimates of wave attenuation for flood risk management projects considering mangroves: damping coefficient β, drag coefficient CD, and Manning’s roughness coefficient n. The attenuation of the incident wave height through the 15.12 m long, 1:2.1 scale mangrove forest was exponential in form and varied from 13%–77%. Water depth and incident wave height strongly influenced the amount of wave attenuation. Accounting for differences in water depth using the sub-merged volume fraction resulted in a common fit of the damping coefficient as a function of relative wave height and wave steepness. The drag coefficient demonstrated a stronger relationship with the Keulegan–Carpenter number than the Reynolds number. The linear relationship be-tween relative depth and Manning’s n was stronger than that between Manning’s n and either relative wave height or wave steep
  • Fort Peck fall release reductions delayed

    Planned release reductions from Fort Peck Dam will be delayed until the end of September, due to the ongoing drought and recent extremely dry weather in eastern Montana.
  • Realizing Multiple Benefits in a Southeast Louisiana Urban Flood Control Project through Application of Engineering With Nature® Principles

    PURPOSE: The application of Engineering With Nature® (EWN®) principles in urban environments and watersheds within and outside the US Army Corps of Engineers (USACE) is increasing. Extreme rainfall events have triggered the need and development of more sustainable urban infrastructure in urban areas such as New Orleans, Louisiana. This technical note documents a USACE–New Orleans District (MVN) project that successfully applied EWN principles in an urban landscape to reduce flood risk while providing other environmental, social, economic, and engineering benefits to both the community and the environment.
  • Engineering With Nature® Principles in Action: Islands

    Abstract: The Engineering With Nature® (EWN) Program supports nature-based solutions that reduce coastal-storm and flood risks while providing environmental and socioeconomic benefits. Combining the beneficial use of dredged sediments with the restoration or creation of islands increases habitat and recreation, keeps sediment in the system, and reduces coastal-storm and flood impacts. Given the potential advantages of islands, EWN seeks to support science-based investigations of island performance, impacts, and benefits through collaborative multidisciplinary efforts. Using a series of case studies led by US Army Corps of Engineers (USACE) districts and others, this technical report highlights the role of islands in providing coastal resilience benefits in terms of reducing waves and erosion as well as other environmental and socioeconomic benefits to the communities and the ecosystems they reside in.
  • Missouri River Basin drought conditions persist

    While the Missouri River basin has seen improved runoff for two consecutive months, it is not enough to overcome the long-term drought persisting in much of the basin. July runoff in the Missouri River basin above Sioux City, Iowa was 3.2 million acre-feet, which is 98% of average and 0.7 MAF more than was forecast last month. This has led to an annual runoff forecast of 20.6 MAF, which is 80% of average and 0.6 MAF higher than last month’s forecast.
  • June’s improved runoff not enough for Missouri River basin drought

    Despite improved runoff in June, water conservation measures will continue for the second half of the navigation flow support season based on the July 1 Missouri River Mainstem Reservoir System storage.
  • Tar-Pamlico and Neuse River Basins, North Carolina, Geomorphic Summary Report

    Abstract: The Tar-Pamlico and Neuse River Basins are neighboring basins in eastern North Carolina, both originating in the piedmont physiographic region, transitioning to coastal plains, and emptying into Pamlico Sound. The Pittsburgh District is responsible for the continued efforts to assist local sponsors with managing these basins and submitted a Water Operations Technical Support (WOTS) request. The WOTS program, funded by Headquarters, US Army Corps of Engineers, provides funding for the Coastal and Hydraulics Laboratory (CHL) to provide technical assistance to develop innovative solutions to water resource problems. The objectives of this study are to identify flood risk management alternatives to address the accumulation of woody debris in the channel systems. CHL compiled existing conditions information and researched current and potential new methods for managing woody debris to provide a comprehensive list of recommendations. The results and recommendations are provided in this document.
  • 22-046 Corps stops diverting water as Mill Creek flows recede

    WALLA WALLA, WA – Water Management officials at the Walla Walla District stopped diverting water into Bennington Lake at 5:45 a.m. in response to receding flows coming down Mill Creek. The diverted water will remain in Bennington Lake until Russell Creek and Cottonwood Creek flows recede.
  • Below average runoff forecasts for upper Missouri River Basin continue

    Runoff continues to be below average in the upper Missouri River Basin above Sioux City, Iowa. Below-normal precipitation, dry soil conditions in the western portions of the basin, and cooler-than-normal temperatures slowing mountain snowmelt, resulted in a May runoff of 2.7 million acre-feet. While this was 0.4 MAF more than forecast last month, this volume is still 79% of average.
  • Three-Dimensional Underseepage Evaluation for Profit Island Vicinity Levee, North of Baton Rouge, Louisiana

    Abstract: This project developed a three-dimensional (3D) seepage model to evaluate efficiency of 84 relief wells and factors of safety (FoS) along the Profit Island vicinity levee (PIVL), north of Baton Rouge, Louisiana. The PIVL model was built based on US Geological Survey MODFLOW-USG. Moreover, a 3D seepage model of RocScience RS3 was also built for a specific study of relief well experiments conducted by the US Army Corps of Engineers in the 1930s and 1940s. The PIVL model was calibrated with measured piezometric head data and relief well flow rates in 1997. Six flood scenarios were conducted: the extreme flood (56 feet), design flood (52.4 feet), 1997 flood (50 feet), 2008 flood (49.22 feet), 2017 flood (45.55 feet), and 2018 flood (49.1 feet). The modeling results show that FoS are all above 1.5 given relief wells at the 1997 design condition. FoS calculated by the blanket theory are more conservative than those by the PIVL model because designed discharge rates were not observed in the field. In comparison with measured flow rates in 2008, the PIVL modeling result indicates potential clogging at many relief wells. New piezometric data and well discharge data are recommended to re-evaluate factors of safety.