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Chapter 2
Technical Aspects of Geostatistics

2-1.  General

a. This chapter provides technical aspects or
the necessary theoretical background for under-
standing kriging applications.  Emphasis will be
placed on presentation of the basic ideas; long
formulas or derivations are kept to a minimum. 
Statistical terms that are commonly used in
geostatistical applications will be highlighted with
bold text and briefly defined as they are intro-
duced; notation used in this ETL is also tabulated
in Appendix B.  The reader who wishes a more
thorough discussion of these fundamental concepts
may consult the references cited in Chapter 3.  
Previous exposure to engineering statistics at the
level of Devore (1987) and Ross (1987) would be
helpful in understanding some parts of this chap-
ter.   Readers with limited statistical experience
may wish to briefly scan this chapter and refer
back to it after reading the remaining chapters.

b. In section 2-2, regionalized random vari-
ables are discussed.  Regionalized random varia-
bles constitute the random process that is sampled
to obtain the observed data that are available for
analysis.  Basic ideas related to probability distri-
butions, means, variances, and correlation are
introduced.  The  variogram, which is the funda-
mental tool used in geostatistics to analyze spatial
correlation, is introduced in section 2-3.  In sec-
tion 2-4 how kriging is used to obtain the best
weights for spatial prediction is discussed, and
how the mean squared prediction error for these
predictions is computed is also shown.  Section 2-5
deals briefly with co-kriging, which is prediction of
one variable based not only on measurements of
that variable but on  measurements of other vari-
ables as well.  Finally,  section 2-6 shows how
kriging may be applied to determine not just opti-
mal spatial predictions but also probabilities
associated with various events, such as extreme
events that may be of importance in risk-based
analyses.

2-2.  Regionalized Random Variables

a. General.

(1)  Suppose the extent of groundwater con-
tamination of a particular pollutant over a given
study area is being determined.  To simplify the
presentation, all data are assumed to be distributed
over a two-dimensional region.  In three-
dimensional groundwater flow systems, one could
study the depth-averaged concentration of a pol-
lutant or the concentration of the pollutant in a par-
ticular horizontal stratum of the flow system.  Let
a vector x=(u,v) denote an arbitrary spatial loca-
tion in the study area.  Unless otherwise stated, it
will be assumed throughout the ETL that u is the
east-west coordinate and v is the north-south
coordinate (Figure 2-1).  Denote by z(x) a meas-
urement at location x, such as the concentration of
a pollutant.  The ultimate goal of an investigator
would be to determine z(x) for all locations in the
study area.  However, without explicit knowledge
of the flow and transport field, this goal cannot be
achieved.  Therefore, suppose, instead, that the
goal is to estimate the values of z(x) with a given
error tolerance.  In other situations, small estima-
tion error over some parts of the study area (for
instance, near a domestic water supply) may need
to be obtained, while allowing larger estimation
errors in other parts of the study area.  The theory
of regionalized random variables is designed to
accomplish these goals.  

(2)  In the regionalized random variable theory,
the true measurement z(x) is assumed to be the
value of a random variable Z(x).  Associating a
random variable Z(x) with a true measurement z(x)
is done for the purpose of characterizing the degree
of uncertainty in the quantity of interest at point x. 
If there is no actual measurement taken at x, then
the values taken on by Z(x) represent “potential”
measurements at x; that is, Z(x) represents possible
values that might be expected if a measurement
were taken at x.  Because there is uncertainty asso-
ciated with Z(x), it needs to be characterized by a
probability distribution, defined by 
where P denotes probability and c is any constant.
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Figure 2-1.  Diagrams showing A, hypothetical
study area; B, stationary covariance function; and
C, isotrophic covariance function

This distribution is a function of c, and, to be com-
pletely defined, needs to be known for all values of
c.  The distribution is used to make evaluations
such as:  suppose that we have no measurement of
concentration of a certain contaminant at x, but the
distribution is known, and a threshold value of
c = 8 mg/l is of interest.  If ,
then, if a measurement were made at x, there is a
60-percent chance of obtaining a value less than or
equal to 8 mg/l.  The distribution also may be used
to calculate other probabilities, such as the proba-
bility of obtaining a value in some specified
interval.

(3)  An important concept to keep in mind in
all geostatistical applications is the support of the
regionalized random variable.  The support of Z(x)
is  the in situ geometric unit represented by an
individual sample.  For example, in a soil contami-
nation study, sample Z(x) might represent the con-
centration of a contaminant in a vertical soil core
0.1 m in diameter and 1 m in length, and centered
at location x.  Thus, even though Z(x) is defined at
a particular point, it is representative of a volume
of soil.  Changing the support of Z(x) will usually
change its probability distribution.  Therefore, the
observations in a geostatistical analysis should all
have the same support.  The method called point,
or punctual, kriging, described in section 2-4, is
designed to predict values of Z(x) with the same
support as the sample data. 

(4)  A concept closely related to support is that
of estimation block, which is a geometric unit
larger than the support of a single observation, for
which a single representative value is desired.  For
example, in the above soil contamination study, it
may be necessary to estimate the average concen-
tration of the contaminant in a truckload of soil
excavated from a block 6 m long, 6 m wide, and
0.3 m thick.  Using a method called block kriging,
also described in section 2-4, the block average can
be predicted based on individual measurements.

(5)  Although the distribution of Z(x) com-
pletely characterizes Z(x) at any particular loca-
tion, this distribution indicates nothing about the
relations among the values of Z(x) at different
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locations, which is very important, because geo- is used to denote the mean, or expected value, of
statistics is based on using a measurement of a the bracketed term, in this case Z(x).  It is intui-
regionalized variable at one location to gain infor- tively helpful to think of the expectation as an
mation about values of the variable at another average.  In fact, if the distribution of Z(x)
location.  The notion of distribution of Z(x) at a assigned equal probability to a finite number of
single location is readily generalized to two or values, then the expectation of Z(x) would indeed
more locations.   For two locations, if we let x  and be the simple average of these numbers.  In geo-1

x  be two distinct locations, then the joint proba-2

bility distribution is defined to be the probability
P [Z (x ) # c , Z (x ) # c ] for any constants c  and1 1 2 2 1

c .  This latter probability means the probability2

that both Z (x ) # c  and Z (x ) # c .  If the vari-1 1 2 2

ables Z(x ) and Z(x ) are statistically independent1 2

of one another, then the joint probability distri-
bution can be obtained as the product of the indi-
vidual probability distributions,

(2-1)

However, in most applications, Z(x ) and Z(x ) will1 2

not be statistically independent and their joint
distribution cannot be obtained from the individual
distributions.  When this joint distribution descrip-
tion is applied to more than two locations, specifi-
cation of the full spatial distribution of Z would
require knowing the joint distribution of Z(x ), ...,1

Z(x ) for any set of n spatial locations and for anyn

n; however, except in very special cases, working
with the full set of distribution functions of Z(x) is
not feasible and is not done.

(6)  To simplify the problem even further, vari-
ous parameters of the distributions are usually
considered rather than dealing with the entire dis-
tributions.  The parameter most commonly used to
characterize a distribution is the mean, or, because
the mean in geostatistical applications depends on
the spatial variable x, the mean may be called the
spatial mean, or the drift.  In statistics, the mean is
referred to as the expectation (E) of the random
variable Z(x), and the symbol m is used in this
report to denote this expectation  Thus, 

(2-2)

statistics, however, Z(x) is usually assumed to take
on any value in a continuous range of possible
values, rather than being limited to a discrete set of
values.  In this case, calculus needs to be used to
define the expectation.  The following example
illustrates the difference between averages and
expectations.

b. Example 1.

(1)  An experiment consists of injecting a con-
servative tracer at a particular well in a steady-
state groundwater flow system and measuring the
concentration, Z (x), of the tracer in a neighboring1

well 24 hr later.  The tracer is then allowed to flush
from the system, and the experiment is repeated a
second time to obtain another concentration mea-
surement, Z (x), at the same location.  If this2

process is repeated n times, n concentration mea-
surements Z (x), Z (x), ..., Z (x) would be obtained,1 2 n

all at location x.  The average concentration level
at location x is

(2-3)

which would change depending on n and on the
actual values obtained for Z (x), Z (x), ..., Z (x). 1 2 n

However, in the limit as n increases, 
becomes closer and closer to the true mean, or
expected, concentration µ(x):

(2-4)

This theoretical limit is a constant value, or popu-
lation parameter, as opposed to , which is a
random variable, or a property of the particular
sample that is taken.  
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(2)  In example 1, no assumptions were needed (1)  If the scenario presented in example 1 is
concerning whether the mean changed with spatial again used, the sample variance S (x) of the n
location, because all sampling was done at one measurements could be computed as follows:
sampling location x.  In most HTRW applications,
the mean will probably change depending on the
sampling location.  In addition, usually only one
observation is available at any particular location.
Therefore some assumptions regarding the struc-
ture of µ(x) must be made.  For example, it is
sometimes appropriate to assume  is
constant for all x, in which case Z(x) is said to
have a stationary mean.  Data which have no
underlying trend such as hydraulic conductivity in
a homogeneous aquifer, for example, might be
assumed to have a constant mean.  If the mean is
constant, it makes sense to estimate it with the
sample average of n observations taken at different
spatial locations x , x , ..., x1 2 n

(2-5)

However, in contrast to example 1,  defined in
this way may not get closer to µ as n gets large. 
Because of the possible spatial correlation in the
data, the size of the sampling region must be large
in relation to the correlation length in order for 
to accurately estimate µ.

(3)  In addition to the mean of Z(x), its varia-
bility or dispersion is also of interest, and this
variability is most commonly measured by the
(spatial) variance, defined to be the mean of
squared deviations of Z(x) from µ(x) and denoted
by F (x).2

(2-6)

The (spatial) standard deviation F(x) is the
square root of the variance.  The following exam-
ple illustrates the difference between the popula-
tion variance, which has been defined above, and a
sample variance.

c. Example 2.

n
2

(2-7)

This number gives a measure of dispersion of the
Z (x) values from their sample mean .  The samplei

variance depends on n and on the particular values
observed for Z (x), Z (x), ..., Z (x).  However, in1 2 n

the limit as n increases, S (x) gets closer andn
2

closer to a constant value, which is denoted by
F (x).  In this case, F (x) is a population param-2 2

eter, and S  (x) is a random variable.n
2

(2)  The mean and variance can both be calcu-
lated from the probability distribution of Z(x). 
Again, in geostatistics, the relations among region-
alized variables at different locations are of
interest.  From the joint distribution of Z(x ) and1

Z(x ) the (spatial) covariance function,2

(2-8)

may be obtained.  This function has a key role in
geostatistical analyses.  It is a measure of associ-
ation between values obtained at point x  and those1

obtained at point x .  If values at these two spatial2

locations tend to be greater than average or less
than average at the same time, then the covariance
will be positive.  However, if the values vary in the
opposite direction (that is, one tends to be larger
than average when the other is less than average,
and vice versa), the covariance will be negative.

(3)  Because C(x ,x ) is an unknown population1 2

parameter, it too must be estimated using a sta-
tistic computed from sample data.  To make this
possible, it is often assumed that the covariance
function depends only on the distance between
points, which is defined as the lag h, and not on
their relative location or orientation,
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(2-9)

Under this assumption, C(h) can be estimated by
pooling all pairs of observations that are approxi-
mately h units apart and computing a sample
covariance function

(2-10)

where h  is the distance between x  and x  and theij i j

average is over all pairs of points such that h  isij

between h-)h and h+)h.  The distance h is called
the lag and )h is called the lag tolerance.  There
are more effective ways to estimate C(h) other than
using Equation 2-10; for example, see Isaaks and
Srivastava (1989).  However, because the empha-
sis in this ETL is on the variogram (to be defined
below) rather than the covariance function, we will
not need to use the estimated covariance function.

(4)  A covariance function is called stationary
if it does not depend on the origin of the coordinate
system, that is,

(2-11)

 for any given vector, b (Figure 2-1).  The covari-
ance function (Equation 2-9) is stationary because
changing the origin does not change the distance
between the points. Substituting x  = x  = x in1 2

Equation 2-9 yields

(2-12)

 which, combined with the definitions in Equa-
tions 2-6 and 2-8, becomes

(2-13)

Therefore, when Z(x) has a stationary covariance
function, the variance of Z(x) is constant for all x. 
The covariance function can then be standardized
by dividing it by the variance.  The resulting
dimensionless function of h is called the spatial
correlation function,

(2-14)

 The correlation function is a scale-independent
measure of linear association between values of Z
at different locations.  The spatial correlation is
always between -1 and +1, with a value of zero
indicating no linear association.

(5)  In addition to being stationary, the covari-
ance function in Equation 2-9 has another import-
ant property.  It is also isotropic, or omni-
directional, because it does not depend on the
direction between the two locations.  In many
HTRW applications, the correlation between
values of Z at two locations is a function of direc-
tion as well as lag.  For example, contaminant
concentrations in a groundwater flow system might
be more highly correlated along a transect in the
direction of flow than along a transect perpen-
dicular to the flow.  In that case, the covariance
function depends on both the lag h and the angle a
between locations,

(2-15)

Here, a is the angle measured counterclockwise
from the east direction (Figure 2-1).  In many geo-
statistical publications or computer packages, the
angle may be defined as clockwise from the north
direction, so care should be taken in defining the
appropriate angle in any application.  A covariance
function satisfying Equation 2-15 is called aniso-
tropic, or multi-directional.
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(2-16)

(2-18)

(6)  To summarize, the basic model frame- will adopt the variogram as the primary tool for
work that will be used throughout the ETL is the analyzing spatial dependence in the remainder of
following:  the value of a measurement z(x) (con- this ETL. 
centration, porosity, hydraulic head, and so on) at
location x of a two-dimensional region is the value b. As was the case with the covariance func-
of a regionalized random variable, Z(x), with mean tion, it is necessary to distinguish between the
µ(x) and stationary covariance function C(h,a). theoretical variogram, which is a population
Other assumptions may be added in the applica- parameter, and the sample variogram, which is an
tions sections to analyze specific data sets, but this estimator of the theoretical variogram obtained
framework will be the basic framework from
which many of the results will be derived.  In some
situations, the covariance stationarity assumption
may be relaxed, for instance, when using the linear
variogram described in the next section.

2-3.  Variograms

a. Regionalized random variables differ from
classical (ordinary least-squares) regression
models in that the residuals, defined as the devi-
ations of the regionalized random variable from its
mean and denoted by

are related to one another, whereas the residuals in
a regression model are generally assumed to be
independent.  Thus, in the regionalized random-
variable model, observed values of the residuals
from sampled locations contain valuable informa-
tion when predicting the value of Z(x) at unsam-
pled sites.  The relationship among the residuals
can be understood by examining the variogram,
which is a tool that is widely used in geostatistics
for modeling the degree of spatial dependence in a
regionalized random variable.  Although the vario-
gram is closely related to the covariance function,
there are some important differences between the
variogram and covariance function that will be
described below.  The covariance function, and
related correlation function, are more commonly
used in basic statistics courses than the variogram,
so many readers may be more familiar with the
former concepts.  However, the variogram is more
widely used in geostatistics, and because of this we 

from observed data.  The theoretical variogram
of a regionalized random variable, ((x  ,x ) is1 2

defined as one half of the variance of the difference
between residuals at locations x  and x :1 2

(2-17)

Because the residuals have been mean-centered, as
shown in Equation 2-16, they have a mean of zero. 
Therefore, using the well-known formula for the
variance of a random variable X

it is seen that Equation 2-17 is equivalent to

(2-19)

The theoretical variogram is always non-negative,
with a small value of g indicating that the residuals
at locations x  and x  tend to be close and a large1 2

value of 8 indicating that the residuals tend to be
different.  Equation 2-19 is sometimes called a
semi-variogram, because of the multiplication by
½, but will be referred to in this ETL as a
variogram.

c. It would be ideal to know the theoretical
variogram before taking observations, but unfortu-
nately, it must be estimated using sample data.  To
facilitate variogram estimation, it is usually
assumed in a similar manner to the covariance
function that ( depends only on the lag,
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(2-20)

or possibly, on the lag and angle between locations

(2-21)

(Figure 2-1).  Equation 2-20 is called an isotropic
variogram and Equation 2-21 is a directional
variogram at angle a. 

d. For the isotropic case, the sample, or
empirical, variogram is obtained by averaging the
square of all computed differences between resid-
uals separated by a given lag:

(2-22)

where, as before, h  is the distance between x  andij i

x .  For a given h as more and more points sepa-j

rated by distance h ± )h  are sampled and as )h
gets small, ( (h) should approach the theoretical^

variogram.  More detail on variogram estimation
will be presented in Chapter 4, including the
directional case.  In this section, it will be suffi-
cient to describe some general properties of iso-
tropic variograms that will be referred to numerous
times in the application sections to follow.

e. A plot of the sample variogram versus h
often has a considerable degree of scatter (Fig-
ure 2-2), which is especially evident if the sample
size n is small.  However, the points can usually be 

fitted by a smooth curve that represents a theoret-
ical variogram selected from a suite of possible
choices.  Usually, the theoretical variogram is
monotonically increasing, signifying that the far-
ther two observations are apart, the more their
residuals tend to differ, on average, from one
another.  Several properties common to many
theoretical variograms are shown in Figure 2-2.   If
the variogram either reaches or becomes asymp-
totic to a constant value as h increases, that value
is called the sill (Figure 2-2).  The distance  (value
of h) after which the variogram remains at or 
close to the sill is called the range.  Measurements
whose locations are farther apart than the range all
have the same degree of association.  Often, a
variogram will have a discontinuity at the origin,
signifying that even measurements very close
together are not identical.  Such variation in the
measurements at small scales is called the nugget
effect.  The size of the discontinuity is called the
nugget.  Although the nugget effect is sometimes
confused with measurement error, there is a subtle
difference between these two concepts that will be
explained in section 2-4.  A simple monotonic
function is usually selected to approximate the
variogram.  Four such functions that are often used
in practice are:

the exponential variogram (parameters:  sill, s >
0; nugget, 0 < g < s; range, r > 0)

(2-23)

the spherical variogram (parameters:  sill, s > 0;
nugget, 0 < g < s; range, r > 0)

(2-24)
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Figure 2-2.  Diagram showing variogram and features

the Gaussian variogram (parameters:  sill, s > 0;
nugget, 0 < g < s; range, r > 0)

(2-25)

and, the linear variogram (parameters:  nugget,
g > 0; slope, b > 0)

(2-26)

f. Although there are many other models that
are used for variograms (Journel and Huijbregts
1978), these four are the most commonly used and
are shown in Figure 2-3.  The exponential, spheri-
cal, and Gaussian models are similar in that they
all have a sill and a range.  However, they have
different shapes near zero lag (h=0) that, as will be
discussed in Chapter  4, result in significant differ-
ences in the prediction results using the three
models.  The linear model is quite different from
the other three, in that it does not reach a sill, but
increases linearly without.  This fact will have
important implications on the prediction results
using a  linear variogram.  Because the squared
differences between residuals tend to increase 

without bound as the lag increases, a regionalized
random variable with a linear variogram will have
ever-increasing variability about its mean as the
size of the sampling region is increased.  In appli-
cations involving the linear variogram, the vario-
gram is usually truncated at a sill corresponding to
the value of the variogram at maximum lag h .max

g. Before closing this section, it will be use-
ful to highlight some similarities and contrasts
between the covariance function and the vario-
gram. Although the variogram is commonly used
in a geostatistical analysis, it is sometimes easier to
gain an intuitive understanding of the methodology
using the covariance function, or equivalently, the
spatial variance and the correlation function. 
When Z(x) has a stationary, isotropic covariance
function (Equation 2-9), there is a one-to-one
correspondence between the variogram and the
covariance function, namely 

(2-27)

As long as C(h) approaches zero as h increases (a
minor technicality that can always be assumed in
practice), then, as indicated by Equation 2-27, the
variogram reaches a sill and the sill equals C(0). 
Therefore, when dealing with a covariance-
stationary regionalized random variable, the vario-
gram and the spatial covariance function contain
the same information as one another.  By factoring
out C(0)=s from Equation 2-27 and using Equa-
tion 2-14, the relationship between the spatial
correlation function and the variogram can be
obtained

(2-28)

From Equation 2-28, it is evident that high values
of ((h) (i.e., close to s) signify low values of D(h). 
In fact, D(h) = 0 whenever ((h) = s, indicating that
observations whose locations are farther apart than
the range are uncorrelated.  As h gets small, a
nugget in ((h) is reflected in a correlation that is
less than 1
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Figure 2-3.  Theoretical variograms showing A, exponential; B, spherical; C, Gaussian; and D, linear
models

(2-29)

Therefore, the larger g is in relation to s, the less
correlated nearby observations are.  The case when
g=s, called a pure nugget variogram, results in
D(h)=0 for all h>0.  In that case, neighboring
observations are uncorrelated no matter how
closely they are spaced. 

h. Occasionally, ((h) may not reach a finite
sill, as in the linear variogram Equation 2-26.  In
that case, it is not possible to define a correlation
function as in Equation 2-28.  The corresponding
regionalized random variable is said to be intrinsi-
cally stationary (Journel and Huijbregts 1978),
which is more general than covariance stationarity. 
The theory behind intrinsically stationary vario-
grams will not be presented in this ETL.  As long
as a “pseudo-range” h  is defined, all of themax

computations described below can be generalized.

2-4.   Kriging

a. General.

(1)  Given a regionalized random variable Z(x)
with a known theoretical variogram, the question
is:  how can the value of Z(x) be predicted at an
arbitrary location, based on measurements taken at
other locations?  Suppose that Z is measured at n
specified locations:  Z(x ), ..., Z(x ).  For example,1 n

Z could correspond to hydraulic conductivity and
the locations might correspond to n preexisting
wells in an aquifer.  Let a new location be given by
x =(u ,v ) and denote the ith measurement location0 0 0

by x =(u ,v ).  Suppose that, based on prior knowl-i i i

edge of the geology, there are no prevailing trends
in hydraulic conductivity, so the mean of Z(x) is
assumed to be constant over the entire region:

(2-30)
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(2)  Suppose the investigator wants to predict Because the variogram is the same for all h>0 and
the value of Z(x ) by using a linear predictor,0

Z (x ), which is defined as a weighted linear combi-^
0

nation of the measured data

(2-31)

where w  is the weight assigned to Z(x ).  To deter-i i

mine specific values for the weights, some criteria
need to be specified for Ẑ (x ) to be a good pre-0

dictor of Z(x ).  The first criterion is that Z0
^ (x ) be0

an unbiased predictor of Z(x ), which is expres-0

sed as

(2-32)

(3)  An unbiased predictor will neither consis-
tently overpredict nor underpredict Z(x ) because0

the statistical expectation of the prediction errors is
zero.  The second criterion for a good predictor is
that it have small prediction variance, defined by

(2-33)

(4)  The smaller the prediction variance, the
closer Ẑ (x ) will be (on average) to the true value0

Z(x ).  The geostatistical method of kriging deals0

with computing the best linear unbiased pre-
dictor of Z(x ), which is the linear unbiased pre-0

dictor (Equations 2-31 and 2-32) with the smallest
possible prediction variance (Equation 2-33).

(5)  The form of the best linear unbiased pre-
dictor will depend on the mean of Z(x).  For exam-
ple, if Z(x) has a constant mean (Equation 2-30)
and a pure nugget variogram [((h)=s for all h>0],
the best linear unbiased predictor of Z(x ) will0

simply be the average of the measured data

(2-34)

there is no trend in the data, there is no reason to
favor any of the measurements over any of the
other measurements.  Therefore, the weights are all
the same.  Ordinary kriging, which is discussed in
section 2-4b, deals with the constant-mean model
(assumption in Equation 2-30) in which the vari-
ogram is not a pure nugget variogram.  The
weights of the best linear unbiased predictor will
reflect the information in the variogram and will
result in an improved predictor over the sample
mean.  In section 2-4c, universal kriging, which is
the extension of ordinary kriging to the case of a
nonconstant mean, is discussed.  Universal kriging
is a very powerful tool that can be used to combine
regression models and spatial prediction into one
unifying theory.  Other, more specialized types of
kriging that will be discussed in this section are
indicator kriging (section 2-6c), block kriging (sec-
tion 2-4d), and co-kriging (section 2-5).

(6)  Before giving the kriging equations, one
final note is in order.  There is a prediction tech-
nique in geostatistics known as simple kriging,
which deals with best linear unbiased prediction in
the case when the mean of Z(x) is fixed and known. 
Simple kriging is not discussed in this ETL,
because, in most applications, the mean is not
known and has to be estimated.

b. Ordinary kriging.

(1)  General.

(a)  Let Z(x)be a regionalized random variable
with constant mean (Equation 2-30) and isotropic
variogram (Equation 2-20).  Also, assume that the
variogram reaches a sill so that the variance of
Z(x) is C(0)=s, and the correlation function is
given by Equation 2-28.  Although the prediction
equations can be expressed in terms of the vario-
gram, they will be defined here in terms of the sill
(variance) and the correlation function.

(b)  Consider linear unbiased predictors of the
form of Equation 2-31 with the condition in Equa-
tion 2-32 holding.  The unbiased condition is
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(2-39a)

(2-39b)

(2-39c)

(2-40a)

(2-40b)

(2-41)

equivalent to  for any µ, which holds

if and only if .  Therefore, all linear

unbiased estimators need to have weights that sum
to one.  There are many sets of weights that satisfy
this condition, including the set with all the weights
equal to 1/n, as in the sample mean, Equation
2-34.  However, the unique set of weights that
minimize the prediction variance (Equation 2-33)
can be shown to satisfy the following set of n+1
ordinary kriging equations (Chapter 12, Isaaks
and Srivastava (1989)):

(2-35a)

(2-35b)

where D  = D(h ) is the correlation between obser-ij ij

vations i and j, h  is the distance between locationsij

i and j, and 8 is a coefficient resulting from the
constrained optimization.  Furthermore, the
resulting ordinary kriging variance is

(2-36)

(c) The system of Equations 2-35a and 2-35b
can easily be solved for the w 's and 8, after whichi

the kriging variance can be obtained from Equa-
tion 2-36.  Note that the ordinary kriging variance
changes depending on the prediction location x ,0

even though the variance of Z(x ) itself (Equa-0

tion 2-6) is constant for all x .0

(2)  Example 1.

(a) Let the mean of Z(x) satisfy Equation 2-30,
and suppose that the residual Z*(x) (Equa-
tion 2-16) has an isotropic exponential variogram
(Equation 2-23).  Consider predicting Z(x ) based0

on n=2 measurements Z(x ) and Z(x ), where the1 2

three locations (x , x , and x ) are distinct.  Using0 1 2

Equations 2-23 and 2-28, note that the correlation
function is 

(2-37)

For illustrative purposes, suppose that 

(2-38)

where p is a fixed proportion.  The quantity p is
sometimes referred to as a relative nugget.

(b)  The ordinary kriging Equations 2-35a and
2-35b are given by

These three equations have three unknowns:  w ,1

w , and 8; the solution is2

and
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The resulting kriging variance is case, the kriging variance will increase to reflect

(2-42)

Although there are only three sample locations in
this example (two actual and one potential), it indi-
cates several properties of best linear unbiased pre-
diction that hold in general.  For example,

(c)    Effect of sill.  The kriging weights
depend on s only through the relative nugget p. 
However, the kriging variance is directly propor-
tional to s.  The sill is called a scaling parameter
because scaling each measurement by a constant c
has the effect of scaling s by c .  When the relative2

nugget is allowed to vary so that s and g can
change independently, the effect of s is somewhat
more complicated.

(d)  Effect of nugget.  Increasing p has the
effect of drawing each of the weights closer to 1/2. 
In fact, as p approaches 1, both weights will equal
1/2.  The larger g is in relation to s, the more
small-scale variability there is in the data and the
less important the correlation between neighboring
locations becomes.  The increased small-scale
variability also causes an increase in the kriging
variance.

(e)  Effect of correlations.  If Z(x ) is more0

highly correlated with Z(x ) than with Z(x ), then1 2

w  will be larger than w , indicating that the mea-1 2

surement at the first location has more predictive
information than the measurement at the second
location.  Also, correlation in the data always
decreases the kriging variance compared to the
variance with uncorrelated data.

(f)  Effect of data clumping.  If Z(x ) and1

Z(x ) are highly correlated, as indicated by D2 12

being close to 1, then the two measurements con-
tain much of the same information.  Two situations
can occur:  D  = D , in which case the weights are10 20

both equal, or D  > D  [D  < D ], in which case10 20 10 20

w  will be much larger [smaller] than w .  In either1 2

the redundant information in the two measure-
ments.  Automatic adjustment of the kriging
weights and kriging variance to account for data
clumping is an important property of the kriging
predictor.

(3)  Example 2 (Nugget effect versus measure-
ment error).

(a)  In example 1, all three locations x , x , and0 1

x , were assumed to be distinct.  When a prediction2

location happens to coincide with a measurement
location, there is an important distinction that
needs to be made between a true nugget effect and
a measurement error.  Suppose that in example 1,
x  and x  are the same.  If there is only small-scale0 1

variability, but no measurement error, then
repeated measurements at the same location should
be identical, that is, D  = 1.  In this case, the krig-10

ing equations result in w  = 1, w  = 0, and 8 = 01 2

and in a kriging variance of zero.  That is, Z(x ) is1

a perfect predictor of Z(x ).  This property, called0

exact interpolation, is a property of kriging when
the data are assumed to contain no measurement
errors.  However, suppose instead that the nugget
is interpreted as measurement error rather than
small-scale variability.  In that case, repeated
measurements at the same location would not be
perfectly correlated, but rather, D  = 1-g/s.  10

(b)  Substituting this correlation into the krig-
ing equations and solving the equations results in a
predictor that does not exactly interpolate the data,
but instead smooths the measured data to account
for the measurement error.  In this ETL, prediction
locations are assumed not to coincide with mea-
surement locations, in which case no distinction
needs to be made between nugget and measurement
error.

c. Universal kriging.

(1)  Universal kriging is an extension of ordi-
nary kriging, that, due to the fact that environ-
mental data often contain drift, can be important in
HTRW site investigations.  Universal kriging
addresses the case of a nonconstant mean µ(x). 
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(2-44)

(2-45)

Generally, the mean is assumed to have a func-
tional dependence on spatial location of the form

(2-43)

where the f (u,v)'s are known deterministic func-j

tions of x=(u,v) (that is, these functions serve as
independent variables) and the $ ’s are regressionj

coefficients to be estimated from the data.  For
example, suppose Z(x) is hydraulic head in an
aquifer.  If the flow is in a steady state, it might be
reasonable to assume, in a given case, that the
mean of Z(x) has a unidirectional groundwater
gradient that is given by

In this example, there are two independent
variables:

and two regression coefficients ($  and $ ).  The1 2

mean can include other independent variables
besides simple algebraic functions of u and v.  For
example, if the aquifer is not of uniform thickness,
an independent variable that involves the aquifer
thickness at location (u,v) could be included.

(2)  The form assumed for the mean in Equa-
tion 2-43 is also generally used in standard linear
regression analysis.  In regression, ordinary least-
squares is generally used to solve for the coeffi-
cients; when this is done, it is assumed that the
residuals are independent and identically distribu-
ted.  Universal kriging is an extension of ordinary
least-squares regression that allows for spatially
correlated residuals.  Assuming that Z(x) is a
regionalized random variable with a mean as in
Equation 2-43 and residual correlation function as
in Equation 2-28, the best linear unbiased predictor
(Equation 2-10) can be obtained from the follow-
ing n+p equations, called the universal kriging
equations (Journel and Huijbregts 1978):

 (2-46a)

(2-46b)

where, in contrast to the ordinary kriging equa-
tions (2-35a and b), there are now p coefficients
8 , ..., 8  resulting from the unbiased condition on1 p

the predictor.  The first term in the mean (Equa-
tion 2-43) will usually be a constant, or intercept,
for which f (x) = 1.  Therefore, the universal krig-1

ing model includes ordinary kriging as a special
case.  The universal kriging variance is given by

(2-47)

These equations can be easily solved to obtain
universal kriging predictors and kriging variances
for any desired location.  The estimated trend
surface does not actually need to be computed to
obtain the universal kriging predictor.  If a particu-
lar application needs an estimate of the trend sur-
face, then generalized least-squares regression can
be used to estimate the coefficients ($ ’s) in thej

regression equation.

d. Block kriging.

(1)  Up to this point, the problem of predicting
the value of a regionalized random variable at a
given location in the region over which the variable
is defined has been considered.  Implicit in this
analysis is the assumption that the support of the
variable being predicted is defined in exactly the
same way as the variables that make up the mea-
surements.  However, there may be applications
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where it is necessary to estimate the average value kriging variance is not as simple, because the
of Z over an estimation block of much larger area individual kriging estimates are not independent of
than is represented by an individual sample.  For one another.  There are simple modifications to the
example, an estimate of the average concentration kriging equations discussed in sections 2-4b and
of a contaminant over an entire aquifer based on 2-4c that can be used to directly compute the krig-
point measurements at various locations might be ing estimate of Z , along with its kriging variance
needed.  In other applications, an estimate of the (Chapter 13, Isaaks and Srivastava (1989)).  The
average concentration of soil contaminant in daily equations are not presented in this ETL.  The com-
excavation volumes that are much larger than the puter packages described in the next section can be
volume of an individual sample may be needed. used to compute block kriging estimates.  In gen-
Let Z  be the average value of Z(x) over a particu- eral, kriged values of block averages are lessB

lar block B, variable than kriged values at single locations. 

(2-48)

where x , i=1,...,m, denotes m prediction locations0i

in block B.  The object is to predict this average
rather than the regionalized variable at a single
location.  In many applications, the locations x0i

might correspond to nodes of a regular grid or
finite- element nodes in a groundwater model. 
Results of the block kriging are dependent on m
and on the placement of the prediction locations. 
Selecting a large number of locations in block B,
where each location has approximately the same
representative area, is the best approach (Chap-
ter 13, Isaaks and Srivastava (1989).

(2)  The objective of block kriging is to obtain
the best linear unbiased predictor of Z  and anB

estimate of the block kriging variance based on the
measurements.  The model for Z(x) can be the
constant-mean model (Equation 2-30) assumed for
ordinary kriging or the more general linear regres-
sion model (Equation 2-43) assumed for universal
kriging.  In either case, the predicted value of ZB

coincides with the average of the predicted values
of the individual measurements in the block; that is 

(2-49)

In this equation, the individual predicted values are
obtained from either the ordinary or universal krig-
ing equations.  However, computation of the block 

B

Consequently, the blocked kriging variance tends
to be smaller than the kriging variance at a single
location.

2-5.  Co-kriging

a. Kriging as discussed so far provides a way
of predicting values of a regionalized variable Z(x)
at a location x  based on measurements of the same0

variable at locations x , x , ..., x .  In some situa-1 2 n

tions, however, there will be available measure-
ments not only of Z(x), but also of one or more
other variables that can be used to improve predic-
tions of Z(x ).  The variable Z(x) will be called the0

primary variable, because it is the one to be pre-
dicted, and the other variables will be called
secondary variables.  Co-kriging is the technique
that allows the use of the information contained in
secondary variables in the prediction of a primary
variable.  As an example, suppose that Z(x) is a
regionalized variable representing the hexavalent
chromium concentration, a relatively difficult
determination, and that hexavalent chromium con-
centration needs to be predicted at a location x0

based on measurements of hexavalent chromium at
other locations, but there are also measurements of
a second relatively easily determined contaminant,
for example lead, that tend to be correlated with
hexavalent chromium concentration and these data
are to be used as well.  Denote the second variable
lead by a regionalized variable W(x), and assume
that measurements have been made on W at m
locations x'  x' , ..., x' .  The co-kriging predictor1 2 m

of Z(x)  is then0
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(2-50)

This is a straightforward extension of the kriging
predictor in Equation 2-31.  Analogous to kriging,
co-kriging produces the weights w  and w'  so thati j

the resulting predictor is the best linear unbiased
predictor.  Also, as with kriging, co-kriging
requires modeling of the variogram for Z, but
co-kriging presents the investigator with the addi-
tional necessity of modeling the variogram of W
and the cross variogram for Z and W.  The opti-
mal weights are then expressed in terms of all
these variogram properties.  More than one sec-
ondary variable may be included in the co-kriging
predictor, and theory has been developed for
co-kriging in the presence of drift (universal
co-kriging) and block co-kriging.  Details are not
included in this ETL, but the interested reader may
refer to Isaaks and Srivastava (1989) and Deutsch
and Journel (1992) for more discussion and cita-
tion of other references.

b. One situation in which co-kriging might be
useful is when the primary variable is undersam-
pled, so any additional information, such as that
given by secondary variables, would be helpful. 
However, although co-kriging can be a useful tool,
joint modeling of several variables tends to be
demanding in terms of data and computational
requirements.  Thus, undersampling of the primary
variable may present problems for co-kriging as
well as for one-variable kriging.  Also, unless the
primary variable of interest is highly correlated
with the secondary variable(s), the weights
assigned to the secondary variable(s) are often
small, with the result that the effort needed to
include the additional variable(s) may not be
worthwhile.  For these reasons, co-kriging tends
not to be used extensively in practice.  

c. Although co-kriging is similar to universal
kriging, in that both techniques use extra variables
to help predict Z(x), there is an important
distinction between the two techniques.  In

universal kriging, the independent variables in
Equation 2-43 need to be known with certainty at
the prediction location x .  For example, aquifer0

thickness might be an independent variable in
predicting aquifer head if it can easily be
determined at any location.  However, aquifer
thickness may need to be considered a secondary
variable in a co-kriging procedure if it is only
known at a few selected points in the aquifer.

2-6.  Using Kriging to Assess Risk

a. General.

(1)  The kriging predictor of Z(x ) has certain0

desirable properties with respect to how close it is
to the actual value of Z(x ), it is unbiased and has0

smallest variance among all linear predictors.  On
the average, or in an expected sense, the predicted
value will be near the actual value.  When possi-
ble, however, the investigator would like to go fur-
ther in specifying the relationship between the
predicted and observed values.  Ideally, the investi-
gator would like to make probability statements. 
For example, if Z(x ) is concentration of a contam-0

inant, the investigator might like to be 95 percent
certain that the true concentration is within
0.05 ug/R of the predicted concentration.  In other
situations, the probability that the actual concen-
tration exceeds a given target value might need to
be estimated.  Knowledge of the entire distribution
function of Z(x), as opposed to knowledge of only
its mean and variogram, can be used for risk-
qualified inferences in situations when extremes
might be of more interest than averages.

(2)  Introduction of the concept of a condi-
tional probability distribution function of the
regionalized variable Z(x) is appropriate at this
point.  This concept will also be used in Chapter 7
when conditional simulation is discussed.  The
conditional probability distribution function has a
definition much like that of the probability distri-
bution function in section 2-2, except the proba-
bility that Z(x) # c is computed “conditional on,”
or “given,” information at other spatial locations. 
The interest in geostatistics is to make predictions
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 at a location x  using information at measurement (2)  To illustrate quantile estimation, suppose0

locations x , x , ..., x , so, in terms of conditional that contaminant concentrations are being studied1 2 n

distributions, interest focuses on P [Z (x ) # c * Z and the concentration that has only a 1-percent0

(x ), Z (x ), ..., Z(x ) ].  The vertical bar denotes the chance of being exceeded at location x  needs to be1 2 n

conditioning and is read “given.”  This conditional determined.  The appropriate (one-sided) value
probability distribution needs to be determined to from a normal table is 2.33, so the desired estimate
make probability statements about the regionalized is 
variable at location x .  Also, conditional mean0

and conditional variance can be defined in the
present context in the same way that mean and possible to find a transformation, Y(x)=T(Z(x)),
variance for distribution functions were defined in such that Y(x) is approximately Gaussian. When a
section 2-2. transformation is made, the kriging analysis is per-

(3)  Section 2-6b contains methods for using inverse transformation may be applied to obtain
kriging output to obtain prediction intervals or prediction intervals for the original data.  For
quantiles when the regionalized random variable is example, the most common transformation is the
either normally distributed or can be transformed
to a near-normal distribution.  Section 2-6c dis-
cusses indicator kriging, which is a nonparametric
method for obtaining quantiles when data cannot
be transformed adequately to a normal distribution. 

b. Normal distributions and transformations.

(1)  For prediction at a location x , a kriging0

analysis produces the predictor Ẑ (x ) and the asso-0

ciated kriging variance .  If more informa-
tive probability assessments are to be made, the
ideal situation is when Z(x) can be assumed to be a
Gaussian, or normal, process, which means that
[Z(x ),..., Z(x )] has a joint normal probability dis-1 n

tribution for any set of n locations and any value
of n.  In this case, the conditional probability dis-
tribution of Z(x ) given the n observations is a nor-0

mal distribution with conditional mean equal to the
kriging predictor Ẑ (x ) and conditional variance0

equal to the kriging variance .  This normal
distribution can be used to obtain a prediction normal kriging, and more generally trans- normal
interval  for Z(x ) (conditional on the measured0

data).  For example, from a table of the normal
distribution, a value of 1.96 corresponding to a
0.95 (two-sided) probability can be obtained. 
Then the assertion that there is a 95-percent chance
that Z(x ) will be in the 95-percent prediction inter-0

val 
can be made.  Knowing this interval is much more
useful than simply knowing the kriging predictor
and variance. 

0

(3)  Even if Z(x) is not Gaussian, it is often

formed using the transformed data Y(x), and the

(natural) logarithmic transformation, in which
Y(x)=1n[Z(x)].  A 95-percent prediction interval
for Z(x) is then {exp [Y(x ) - 1.96 F (x )], exp [Y^

0 k 0
^

(x ) + 1.96 F (x )]}.  As long as the transformation0 k 0

is a one-to-one function such as a logarithmic
transform, prediction intervals for the original data
can be obtained by simply back-transforming pre-
diction intervals for the transformed data. 

(4)  Although it is a simple matter to obtain
prediction intervals and probabilities using simple
back-transformation, it is more difficult to obtain a
predictor of the untransformed data that is both
unbiased and optimal in some sense.  For example,
in the case of a logarithmic transformation, a
kriging analysis using the transformed data yields
a predictor Y (x ), which is the best linear unbi-^

0

ased predictor of Y (x ).  However, the back-0

transformed value Z (x ) = exp [Y (x )] does not^
0 0

^

possess these same optimality properties as a pre-
dictor of Yx .  The methodology known as log-0

kriging, has been developed to obtain predictors in
this setting (Journel and Huijbregts 1978), but
because of the complexity involved in these pro-
cedures, they are not usually used by practitioners.
If a predicted value corresponding to Z(x ) needs to0

be obtained for purposes of contour plotting, the
kriging predictions Y (x ) may be back-transformed^

0

and plotted, as long as the investigator realizes that
such values do not have the usual kriging opti-
mality properties.
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c. Indicator kriging. is an estimate of the conditional probability distri-

(1)  There may be situations when a transfor- This analysis may be performed for a range of
mation that makes Z(x) approximately normal values of c, and by doing this the entire distribution
cannot be easily determined. In such situations, function can be estimated.  This estimate of the
indicator kriging can be used to make inferences
about the probability distribution of Z(x).  Because
no distributional assumptions are made, this tech-
nique is known as a nonparametric statistical
procedure.  An example of indicator kriging is
included in Chapter 5, and a paper by Journel
(1988) is a good reference for additional informa-
tion about indicator kriging.

(2)  To perform indicator kriging, a special
transformation, known as an indicator transforma-
tion, is applied to Z(x):

(2-51)

If, as in the usual kriging scenario, the data set at
hand consists of measurements of the regionalized
variable Z(x) at n locations, c needs to be fixed
first, and then the indicator transformation is
applied by replacing values that are less than or
equal to c with 1 and values that are greater than c
with 0.  The variogram and kriging analysis is then
performed using these 0’s and 1’s rather than the
raw data. 

(3)  Kriging predictors using the indicator data
will be equal to their observed values of 0 or 1 at
the measurement locations x , i=1,...,n.  However,i

at locations different from the measurement loca-
tions, predictions may be between 0 and 1.  In
interpreting these values, the power of indicator
kriging becomes apparent.  A predicted value at x  0

bution . 

distribution function can be used in the same man-
ner discussed above to obtain prediction intervals
or estimates of quantiles.  For example, to estimate
the value that has a 1-percent chance of being
exceeded at location x , the value of c for which the0

kriged indicator prediction is 0.99 at that location
is determined.

(4)  One advantage of indicator kriging is that
the indicator variogram is robust with respect to
extreme outliers in the data because no matter how
large (or small) Z(x) is, the indicator variable is
either 0 or 1.  Indicator variables may also be used
in the context of block kriging.  For example, a
spatial average of I(x,c) over a block B equals the
fraction of block B for which Z(x) is less than c.
Another advantage of indicator kriging is that it
can be used when some data are censored.

(5)  Despite the relative ease of implementa-
tion, there are several drawbacks to indicator
kriging, and investigators may wish to use this
technique only when other methods, such as
normality transformations, produce unacceptable
results.  For example, the kriged values of I(x,c)
may be less than 0 or larger than 1.  Also, the
kriged prediction for I(x,c ) may be larger than the1

kriged prediction for I(x,c ) even if c <c , which is2 1 2

not compatible with a valid probability distribu-
tion.  There are several more advanced techniques
for dealing with these problems (Chapter 18,
Isaaks and Srivastava (1989); however, they are
beyond the scope of this ETL.


