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Appendix B 
Seismic Analysis for Preliminary Design or Screening Evaluation of Free- 
Standing Intake Towers 
 
 
B-1.  Introduction 
 

a. General.    Guidance for the preliminary design or screening evaluation of intake towers is based on   
linear elastic response spectra modal techniques, and a brief discussion of nonlinear dynamic analyses is also 
presented. The procedures presented here are adequate for the seismic analysis of intake towers that are  
square, rectangular, or circular in plan and bend  about a elastic center line as a cantilever beam.  

 
b.  Standard spectra.  Standard spectra are commonly used for preliminary design when site-specific 

response spectra are not available.  A Newmark and Hall Standard Response Spectrum is illustrated in Fig-
ure B-1.   ER 1110-2-1806 and EM 1110-2-6050 also provide guidance on the use of standard response 
spectra, and an example of the  standard  acceleration response spectra is shown in Figure B-2. 
 

c.  Smoothed response spectra.  Actual site response spectra generated from specific earthquake  
accelerograms tend to be very jagged, as indicated in Figure B-2a, and are not necessarily good design tools.  
Therefore a modified form of the response spectrum, developed by averaging the response values from many 
response spectra for several different earthquakes and then smoothing the resulting peaks and valleys, is used 
for analysis.  Equal hazard spectra developed by probabilistic methods are also used for analysis. More 
information about response spectra used for the design or evaluation of hydraulic structures is in 
EM 1110-2-6050. 

 
  d. Linear elastic response spectrum modal analyses (RSMA).     Response spectra may be used for the 
analysis of multiple-degree-of-freedom (MDOF) systems by entering the spectrum with any one of the natural 
periods of the MDOF system.  In such circumstances, the spectrum will yield only the response for the single 
vibration mode having that natural period.  It is necessary in such an approach to find the individual responses 
for several modes (and their natural periods), then combine them to find the total response.  The response 
spectrum  provide the maximum displacement (and pseudo-quantities) for each natural period,  even though 
each maximum displacement occurs at a different time.  Using direct superposition to combine the dis-
placements would accumulate all maximum displacements as if they were occurring at  the same instant.  
Such a solution would  grossly distort the structural response. In addition, the displacements bear no algebraic 
signs.  Only the absolute value of the displacement is known.  The direct sum, without algebraic signs, would 
further  distort the response. Two rational means of combining several responses from the response spectrum 
are the square-root-of-the-sum-of-the-squares (SRSS) method and the complete-quadratic combination (CQC) 
method.  Both methods attempt to find the least upper bound for the behavioral response.   

 
(1) SRSS method.  

 
 (a) SRSS is an approximate method for combining modal responses.  In the SRSS method, the squares of 

a specific response are summed (e.g., displacement, drift, story/base shear, story/base overturning moments, 
elemental forces, etc.).  The square root of this sum is taken to be the combined effect.  It is important to note 
that the quantities being combined (e.g., story drift, base shear, etc.) are those for each individual mode. 
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   Figure B-1.  Typical tripartite plot and smooth-shaped response  

   spectrum (Newmark and Hall 1982) 
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   Figure B-2.  Standard acceleration response spectra 
 

 (b) The governing equation of the SRSS method can be written mathematically as 
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where 
 

  ui  = approximate maximum response for the ith component of the behavioral response 
 

   n = number of modes to be used in the analysis 
 

  uij  = ith component of the jth modal behavioral response vector 
 
The SRSS method is conservative most of the time.  It tends to be unconservative when the modal frequencies 
are closely spaced. 
 

(2)  CQC method.  CQC is a modal combination method based on the use of cross-modal coefficients.  
The cross-modal coefficients reflect the duration and frequency content of the seismic event as well as the 
modal frequencies and damping ratios of the structure.  
 
 (a) Mathematically, the governing equation of the CQC method can be written as: 
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where 
 

  uik  = ith component of the kth modal response vector 
 

  ρjk  = cross-modal coefficient for the jth and kth modes 
 
As indicated in d above, the behavioral responses are calculated for each mode prior to their superposition in 
CQC.  If the duration of the earthquake is long compared with the periods of the structure and if the earth-
quake spectrum is smooth over a wide range of frequencies, the cross-modal coefficient can be approximated 
as: 
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where r is the reference level and ξ is the modal damping ratio and 
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where 
 
  Tk = period of the system for mode k 
 
  Tj = period of the system for mode j  
 
Note that if the frequencies are well separated, the off-diagonal terms approach zero and the CQC method 
reverts to the SRSS method. 
 
B-2.  RSMA of Intake Tower 

 
A response spectrum modal analysis of an intake tower can be performed the using an approximate two-mode 
model, a beam model, or a finite element model. 
 
 a. Approximate two-mode model.  The approximate two-mode model is a manual procedure for  the 
preliminary analysis of intake towers. The two-mode method includes bending deformations only, which 
provides sufficient accuracy for preliminary analysis of intake towers that are regular in plan and elevation 
and  are supported on rigid foundation. If a sufficient number of lumped masses are used to represent the 
distributed mass system, any error introduced by the lumped mass approximation will be negligible.  A 
minimum of six lumped masses should be used for modeling  an intake tower. A  two-mode, added-mass 
analysis can be performed  on a spreadsheet.   The following six-step procedure applies to the analysis of a 
free-standing stepped tower, such as that shown in Figure B-3. An example of the two-mode approximate 
method is presented in Appendix C: 
 
 (1) Determine the mass per unit length.  
 
 (a) An added mass concept is used to simulate the hydrodynamic effects of the mass of water in the 
tower and the water surrounding the tower.  Establish all discontinuities in size, stiffness, mass, and added 
mass.  For each piecewise continuous segment, determine the flexural moment of inertia I of the cross sec-
tion about both the xx- and yy-axes, the mass of the structure per unit length md, the added mass of water 
per unit length outside the tower ma

o, the added mass of water per unit length inside the tower ma
i 
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   Figure B-3.   Tower geometry 
 
and the total mass per unit length m(z) of the tower at any height z/L, where L is the total height of the tower.  
The total mass per unit length of the tower is the sum of the individual masses: 
 

m(z) = md(z) + ma
o(z) + ma

i(z) (B-5) 
 
where 
 

 z = coordinate measured along the height of the tower 
 
 md(z) = actual mass of the tower 
 
 ma

o(z) = hydrodynamic added mass due to the surrounding water 
 
 ma

i(z) = hydrodynamic added mass due to theinternal water 
 
 (b) The hydrodynamic added mass ma

o(z) can be found for the two-mode case from Figure B-4 and the 
mass ma

i(z) from Figure B-5.  The use of these figures to obtain the added hydrodynamic mass is illustrated in 
Appendix C.  A refined procedure for determining more accurately the added hydrodynamic mass is described 
in Appendix D.  The total mass Mn of any segment n is then computed as 
 

Mn = m(z)(∆L) (B-6) 
 
where ∆L is the length of the segment n. 



EM 1110-2-2400 
2 June 03 
 

 
B-6 

 
 
      Figure B-4.   Hydrodynamic added mass ma

o from the two-mode  
      approximate analysis procedure 
 
 
 (2) Determine the  stiffness per unit length.  The shape function ϕ in a distributed-mass analysis 
corresponds to the mode shape in a lumped-mass analysis. The shape functions for distributed-mass towers 
are given in Tables B-1 and B-2 for various amounts of taper.  The displacement of the normalized shape 
functions at the tenth points are given directly in the tables.  (The normalized shape function has a 
displacement of 1 at the top of the tower.)  If the structural mass is the only mass (no added masses), the 
period can also be computed from the coefficients given in the tables.  Note that if Tables B-1 and B-2 are 
used, the ratio of moments of inertia for bending about the xx-axis will not likely be the same as that for bend-
ing about the yy-axis.  There will, therefore, be two values of the natural period T (one for each shape 
function) in each of the x- and y-directions.  The generalized stiffness k* may be computed from the 
coefficients given in Tables B-1 and B-2.  The value of k* will be needed in subsequent calculations and 
should be determined at this point. 
 
 (3) Determine the normalization ratio (Ln/m *).  The normalization ratio Ln/m* is computed directly and 
recorded.  Physically, it is the ratio of the displacement (or acceleration) of the actual shape function to the 
displacement (or acceleration) of the normalized shape function.  The normalization factor Ln is given by 
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   Figure B-5.   Hydrodynamic added mass ma

i from the two-mode  
   analysis procedure 
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and the generalized mass m* is given by 
 

 2
*

0
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where Mn is found in step 1, and φn is the distance from the center line of the tower to the center of the 
deflected segment n. 
 
 (4)  Determine the natural period of vibration T in seconds, the natural frequency ω in radians per second, 
and the mode shapes for the first two shape functions in both directions: 
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and 
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 (5)  Determine the spectral pseudo-acceleration SA from the response spectrum.  For the spectral pseudo-
acceleration SA, compute the pseudo-displacement SD, where 
 

 2
A

D
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ω

=  (B-11) 

 
Physically, the spectral pseudo-displacement  SD times the normalization value 1 is the normalized displace-
ment at the top of the tower. 
 
 (6) Determine the lateral displacement,  and the inertial forces, shears, and moments at the center of each 
segment. 
 
 (a) The actual lateral displacement of any mass Mn is given by 
 

Yn = (Ln/m*)SDφn (B-12) 
 
 (b) The inertial force acting on any mass Mn is computed as 
 

Fn = Mnan = (Ln/m*)MnSAφn (B-13) 
 
where an is the actual acceleration of the mass Mn. 
 
 (c) The shear at the center of any segment is the sum of all inertial forces above that level: 
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(d) The moment at the center of any segment n is the sum of moments above that level: 
 
Mn  =Mn+1 + V n+1 (Zn+1 -Zn )L (B-15) 

 
where Zm is the nth coordinate measured along the height of the tower 
 

b. Computer analysis using beam elements. 
 
 (1) Typically, the output from a beam modal analysis is in terms of moments, shears, and thrusts that can 
be directly used to design or evaluate reinforced concrete sections. Beam or finite element modals can be used 
with response spectra modal analyses as deemed appropriate by the structural engineer.   
 

(2) Alternatively, the structure may be modeled using beam elements, as per the two-mode approximate 
method, and analyzed using a structural analysis computer program with dynamic analysis capability. 



 EM 1110-2-2400 
 2 June 03  
 

 
  B-9 

Computer programs are capable of analyzing as many modes of vibration as there are degrees of freedom, 
although for regular towers only the first two or three modes of vibration need usually be considered.  
Bending, shear, and torsional stiffness can be considered in a computer analysis.  Some computer programs 
can also model structure-foundation interaction and structure-reservoir interaction.  The use of beam elements 
is satisfactory for towers that are regular in plan and elevation, but it may not be appropriate for irregular 
towers.  The added-mass concept described in paragraph B-2a(1) can be used to account for the hydrody-
namic effects of the internal and surrounding water.  The refined procedure of Appendix D for computing 
hydrodynamic added mass remains valid for beam element analyses.  
 

c. Computer analysis using finite elements.  The finite element response spectrum approach can be used 
for intake towers that cannot be adequately modeled with beam elements (e.g., irregular towers).  RSMA of 
intake towers can also be performed by using finite elements such as plate, shell, and three-dimensional solid 
elements for either preliminary or final design using commercially available software with dynamic analysis 
capability (SAP, ANSYS, ADINA, GTSTRUDL, STAAD, etc.). Dynamic analysis performed by 
commercially available software can include the effects of both flexural and shear deformation and can 
consider the effects of any number of modes of vibration. 
 
 (1) The primary advantage of this approach lies in its ability to evaluate three-dimensional systems, to 
include torsional effects, and to pinpoint areas of localized stress concentrations.  The finite element method 
warrants consideration when  the tower is irregular in plan and/or elevation (e.g., torsion, vertically soft areas, 
major openings, etc.); or when soil-structure interaction is important (e.g., embedment greater than one third  
of the total tower height, siltation surrounding the tower, nonrigid foundation, etc.).  Multiple analyses are 
often used to bracket their effects on the response of the tower.   
 
 (2) Two problems exist when finite elements are used to model the foundation of a structure subjected to 
seismic input.     
 
 (a) First, the sides and base of the elements do not allow the wave motion to permeate the boundaries 
(base and sides).  The waves are, therefore, reflected back into the finite element grid, which distorts the 
results. 
 
 (b) Second, it is inappropriate to excite the base of the foundation model with an earthquake motion 
recorded at the ground surface.  Several computer programs have a feature called a transmitting boundary that 
alleviates this problem.  Otherwise, the foundation can be modeled as massless.  This is equivalent to using 
massless springs, and the motion at the base of the foundation is equivalent to the motions at the surface.  The 
size of the foundation model should be no less than three times the longest base dimension of the structure in 
width and two times the longest base dimension in depth.  The model size and influence can be checked 
statically by increasing the size of the foundation modal and checking the difference in the static stresses at 
the base of the structure.  The correct dimensions are found once the difference in the stresses becomes 
negligible.  Most commercial finite element programs in structural analysis can perform a response spectrum 
analysis, but the resulting analysis provides only the absolute maximum stresses.  Therefore, actual stress 
distributions are not provided by the analysis.  The structural engineer must make some assumptions 
regarding the nature and shape of the distributions.  Using these assumptions, the engineer then converts the 
results into the moments, shears, and axial loads required for the ultimate strength design (see Section 2-8 of 
EM 1110-2-6050). 
 
 (3) The procedure for a finite element response spectrum analysis by finite elements is as follows: 
 
 (a)   Determine the added mass.  The added-mass concept as explained in paragraph B-2a(1) remains 
valid in the finite element approach.  The total added mass is distributed to the elements in a way that approxi-
mates the actual location and effects of the water.  
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 (b) Generate the structural mesh.  The finite element mesh should be designed to represent adequately the 
structural configuration and stiffness.  The elements (beam, plates, and/or solids) should be chosen and sized 
to represent both the shear and bending effects of the seismic event adequately. 
 
 (c) Generate the soil/foundation mesh.  If the foundation of the tower is very stiff relative to the tower, or 
if the effect of a more flexible foundation causes a smaller pseudo-acceleration to be chosen from the design 
spectra, the base may be modeled as rigid, which will produce conservative results.  The more flexible the 
base, the larger the period; therefore, it is conservative to use a rigid base when the period is on the 
descending portion of the acceleration response spectrum curve.  If the foundation cannot be modeled as rigid, 
it can be modeled with the use of springs or finite elements.  Springs have often been used to model soil-struc-
ture interaction (Hall and Radhakrishnan 1983).  The difficulty lies in choosing spring constants that reflect 
the vertical, horizontal, and rotational stiffnesses of the foundation with adequate accuracy.  These constants 
are dependent on the size of the structure, the design loads, the loading history, etc., all of which are quite 
difficult to quantify.  The spring constants are usually given upper and lower bounds and are used in multiple 
analysis to bracket their effects on the response of the tower.                                               
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Table B-1 
Displacements for Step-Tapered Towers for the First Shape Function 
 

First Shape Function 
 
IBASE 
 1  2   3  4  5  6  7  8  9  10 
 
ITOP 
 
With or without added mass, 
Coeff. of k* 3.091  5.394  7.391  9.194  10.86  12.41  13.88  15.27  16.60  17.87 
 
When there is no added mass: 
Coeff. of m*   0.250    0.253    0.254    0.254    0.254    0.254    0.254    0.254    0.254    0.254 
Ln/m*           1.566    1.633    1.677    1.710    1.737    1.760    1.781    1.799    1.815    1.830 
Coeff. of T    1.787    1.360    1.164    1.045    0.962    0.900    0.851    0.811    0.777    0.749 
 
 

Value of The Shape Function at The Tenth Points (φ) 
 
1.0L        1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000    1.000 
0.9L  0.862    0.856    0.853    0.849    0.847    0.845    0.843    0.841    0.840    0.838 
0.8L        0.725    0.714    0.706    0.701    0.696    0.692    0.689    0.685    0.683    0.680 
0.7L        0.591    0.575    0.565    0.557    0.551    0.545    0.540    0.536    0.533    0.529 
0.6L        0.461    0.443    0.431    0.422    0.415    0.409    0.404    0.400    0.396    0.392 
0.5L        0.340    0.321    0.309    0.301    0.294    0.288    0.283    0.279    0.275    0.272 
0.4L        0.230    0.214    0.204    0.197    0.191    0.186    0.182    0.179    0.176    0.173 
0.3L        0.136    0.125    0.118    0.113    0.109    0.106    0.103    0.101    0.098    0.097 
0.2L       0.064    0.058    0.054    0.051    0.049    0.048    0.046    0.045    0.044    0.043 
0.1L       0.017    0.015    0.014    0.014    0.013    0.013    0.012    0.012    0.012    0.011 
0.0L        0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000    0.000 
 
 
 

Stiffness k * = coeff. ×  TOP

3

EI

L
for all values of BASE

TOP

I

L
 

 
With no added mass: m TOP = mass of top step 
Mass m * = coeff. × m TOP L 
 

m*
Period T=2π

k*
 

 
 L = overall height of tower 
 
 E = modulus of elasticity 
 
 l TOP = moment of inertia of the top step 
 
When an added mass exists, see paragraph B-2a(4) for the calculation of period T. 
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Table B-2 
Displacements for Step-Tapered Towers for the Second Shape Function 
 
  

Second Shape Function 
 
  
ibase 
   1  2   3  4  5  6  7  8  9  10 
 
itop 
 
with or without added mass, 
coeff. of k*     121.4    137.4    147.3    154.7    160.6    165.6    169.9    173.7    177.1    180.3 
 
when there is no added mass: 
coeff. of m*    0.250     0.216     0.198     0.187     0.180     0.174     0.169     0.165     0.162     0.159 
ln/m*          -0.868   -0.939   -0.976   -0.999   -1.015   -1.027   -1.036   -1.043   -1.048   -1.053 
coeff. of t     0.285     0.249     0.231     0.219     0.210     0.204      0.198     0.194     0.190     0.187 
 
 

Value Of The Shape Function At The Tenth Points (φ) 
 
 
1.0l         1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000     1.000 
0.9l         0.524     0.545     0.556     0.563     0.568     0.572     0.574     0.577     0.579     0.580 
0.8l         0.070     0.117     0.141     0.156     0.167     0.176     0.183     0.188     0.193     0.197 
0.7l       -0.317   -0.241   -0.201   -0.176   -0.157   -0.143   -0.131   -0.121   -0.113   -0.106 
0.6l        -0.589   -0.483   -0.428   -0.392   -0.366   -0.346   -0.329   -0.316   -0.304   -0.294 
0.5l        -0.714   -0.585   -0.520   -0.477   -0.446   -0.422   -0.402   -0.386   -0.372   -0.360 
0.4l        -0.683   -0.552   -0.486   -0.443   -0.413   -0.389   -0.370   -0.354   -0.341   -0.329 
0.3l       -0.526   -0.416   -0.361   -0.326   -0.301   -0.282   -0.267   -0.255   -0.244   -0.235 
0.2l        -0.301   -0.233   -0.200   -0.179   -0.165   -0.153   -0.145   -0.137   -0.131   -0.126 
0.1l        -0.093   -0.071   -0.060   -0.054   -0.049   -0.046   -0.043   -0.041   -0.039   -0.037 
0.0l         0.000     0.000     0.000      0.000     0.000     0.000     0.000     0.000     0.000     0.000 
  
 

 Stiffness k * = coeff. ×  TOP

3

EI

I
for all values of BASE

TOP

I

I
 

 
 
with no added mass: 
mass m* = coeff. × mtopl  mtop = mass of top step 
 

m*
Period T=2π

k*
 

 
       l  = overall height of tower 
 
      E = modulus of elasticity 
 
   Itop  = moment of inertia of the top step 
 
When an added mass exists, see paragraph B-2a(4) for the calculation of period T. 
 
 
 




