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APPENDIX B

DERIVATION OF EQUATIONS FOR FLEXURAL AND AXIAL LOADS

B-1. General

Derivations of the design equations given in paragraphs 4-2 through 4-4 are
presented below. The design equations provide a general procedure that may be
used to design members for combined flexural and axial load.

B-2. Axial Compression and Flexure

a. Balanced Condition

From Figure B-1, the balanced condition, Equations 4-3 and 4-4 can be derived
as follows:
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From the strain diagram at balanced condition (Figure B-1):
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is obtained by substituting Equations B-4 and B-1 into Equation B-7 with
ku = k b, f s = f y and Pu = Pb.
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b. Sections Controlled by Tension (Figure B-1).

(B-10, Eq. 4-5)

φPn is obtained from Equation B 1 with f s f y as:
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The design moment φMn is expressed as:
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Substituting Equation B-1 with f s = f y into Equation B-4 gives
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Solving by the quadratic equation:
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c. Sections Controlled by Compression (Figure B-1)

φPn is obtained from Equation B-1

(B-16, Eq. 4-8)φPn φ 0.85 f ′
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and φMn is obtained by multiplying Equation B-16 by e.
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The steel stress, f s, is expressed as f s = Es εs.

From Figure B-1.
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Substituting Equations B-1 and B-18 into B-4 gives
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which can be arranged as
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B-3. Flexural and Compressive Capacity-Tension and Compression Reinforcement
(Figure B-2)

a. Balanced Condition

Using Figure B-2, the balanced condition, Equation 4-13 can be derived as
follows:

From equilibrium,

(B-21)Pu

φ 0.85 f ′
c k ubd f ′

s ρ ′ bd f s ρbd

In a manner similar to the derivation of Equation B-4, moment equilibrium
results in
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As in Equation B-6,
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which can be rewritten as
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b. Sections Controlled by Tension (Figure B-2)

φPn is obtained as Equation B-21 with f s = f y.
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Therefore,
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Substituting Equation B-21 with f s = f y into Equation B-22 gives,
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Using Equation B-29, Equation B-30 can be written as:

(B-31, Eq. 4-17)

k 3
u









2 e ′
d

1 β1 k 2
u







f y

0.425 f ′
c









ρ ′ e ′
d

d ′
d

1 ρe ′
d





2 β1
e ′
d

1 k u

f yβ1

0.425 f ′
c









ρ ′ d ′
d

e ′
d

d ′
d

1 ρe ′
d

0

c. Sections Controlled by Compression (Figures B-2)

φPn is obtained from equilibrium

(B-32, Eq. 4-18)φPn φ 0.85 f ′
c k u ρ ′ f ′

s ρf s bd
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Using Equations B-11 and B-32,
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From Figure B-2
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(B-36)
0.85 f ′

c k ubd f ′
s ρ ′ bd f sρbd e ′

0.425 f c ′ 2k u k 2
u bd 2 f ′

s ρ ′ bd( d d ′ )

B-8



EM 1110-2-2104
30 Jun 92

Substituting Equations B-34 and B-35 with kb = ku into Equation B-36 gives

(B-37, Eq. 4-22)
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B-4. Flexural and Tensile Capacity
a. Pure Tension (Figure B-3)

From equilibrium (double reinforcement)

(B-38)φPn φ As A ′
s f y

For design, the axial load strength of tension members is limited to
80 percent of the design axial load strength at zero eccentricity.

Therefore,

(B-39, Eq. 4-23)φPn(max) 0.8 φ ( ρ ρ ′ ) f y bd

b. For the case wher e 1 - h ≥ e ′ ≥ 0, the applied tensile resultant
2d d

P
u lies between the two layers of steel.
φ
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or

(B-41, Eq. 4-25)φMn φ ρf y ρ ′ f ′
s









1 h
2d

e ′
d

bd 2

From Figure B-3,
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which can be rewritten as
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From Figure B-3 equilibrium requires:
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Substituting Equation B-42 and f s = f y into Equation B-43 results in

(B-44, Eq. 4-27)k u

ρ ′ d ′
d

1 d ′
d

e ′
d

ρ e ′
d

ρ e ′
d

ρ ′ 1 d ′
d

e ′
d

c. The case where ( e ′/ d) < 0 is similar to the combined flexural and
compression case. Therefore, ku is derived in a manner similar to the
derivation of Equation B-15 and is given as
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Figure B-1. Axial compression and flexure, single reinforcement
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Figure B-2. Axial compression and flexure, double reinforcement
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Figure B-3. Axial tension and flexure, double reinforcement
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