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Chapter 4
Analysis of Single Wells

4-1. Assumptions

Analytical procedures for determining well flows and
head distributions adjacent to single artesian relief wells
are presented below. By definition, relief wells signify
artesian conditions, and equations for artesian flow are
applicable. In cases where wells are pumped, and gravity
flow conditions exist, procedures for well analysis can be
found in TM 5-818-5. It is assumed in the following
analyses that all seepage flow is laminar or viscous, i.e.,
Darcy’s Law is applicable. It is also assumed that steady
state conditions prevail; the rate of seepage and rate of
head reduction have reached equilibrium and are not time
dependent. Unless otherwise indicated, the well is
assumed to penetrate the full thickness of the aquifer.

4-2. Circular Source

Certain geologic or terrain conditions may require the
assumption of a circular source of seepage. The formulas
for a fully penetrating well located at the center of a
circular source (see Figure 4-1) are
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where

hp = head at point p between the well and the
source

H = head at the source

Qw = well discharge

k, (kf) = coefficient of permeability of pervious
substratum

D = thickness of pervious foundation

R = radius of circular source (radius of
influence)

hw = head at well

rw = radius of well

4-3. Noncircular Source

If geologic or terrain conditions indicate a noncircular
source of seepage, the radius of influence,R, may be
replaced byAc, defined as an effective average of the
distance from the well center to the external boundary.
For a rectangular boundary of sides 2a and 2b, the value
of Ac is

(4-3)
Ac

4ab
π

4-4. Infinite Line Source

Conditions may arise where the flow to the well origi-
nates from the bank of a river or canal reservoir or
another body of water. In such cases, the bank or
shoreline may act as an infinite line source of seepage. If
leakage occurs through the top stratum, the effective dis-
tance to the infinite line source of seepage should be
computed as discussed in Appendix B. The solutions for
a single well adjacent to an infinite line source (see
Figure 4-1) is determined using the method of images
described by Muskat (1937), Todd (1980), and EM 1110-
2-1901. The formulas are

(4-4)hp H
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(4-5)hw H
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where

r′ = distance from pointp to image well

r = distance from pointp to real well

S= distance from real well to line source

A solution for hp is also presented in terms ofx and y
coordinates in Figure 4-1 (Equation 4-6).
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Figure 4-1. Summary of equations for artesian flow to single well
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4-5. Finite Line Source

In cases where the length of the source of seepage is
relatively small compared to its distance from the well,
the source may be considered as a finite line source. The
solution for a single well adjacent to a finite line source
was developed by Muskat (1937). The formulas, which
are available only in terms of head at the well, are shown
in Figure 4-1 (Equations 4-7 and 4-8).

4-6. Infinite Line Source and Infinite Line Sink

As discussed in Appendix B, a semipervious landside
blanket can be replaced by a totally impervious top
stratum and a theoretical line sink at an appropriate
equivalent distance from the well. The theoretical line
sink, parallel to the infinite line source, is referred to as
an infinite line sink. A solution, based also on the
method of images, considering one of the infinite line
sources as a sink, was developed by Barron (1948) and is
shown in Figure 4-2.

4-7. Infinite Line source and Infinite Barrier

The method of images is an extremely powerful tool for
developing solutions to wells for various boundary
conditions. Solutions for various boundary conditions
including barriers are presented by Ferris, Knowles,
Brown, and Stellman (1962), Freeze and Cherry (1976),
and Todd (1980). For example, a typical problem would
be to calculate the discharge or heads for a single artesian
well located between a river denoted by an infinite line
source and a barrier such as a buried channel or rock
bluff. In this case, the image well for the river would
have a second image well with respect to the rock bluff
which in turn would have an image with respect to the
river and so on. A similar progression of image wells
would be needed for the impermeable barrier (see
EM 1110-2-1901). The image wells extend to infinity;
however in practice, it is only necessary to include pairs
of image wells closest to the real well because others
have a negligible influence on the drawdown. A solution
for this case was presented by Barron (1982) and is
shown in Figure 4-3.

4-8. Complex Boundary Conditions

Oftentimes, geologic factors impose conditions which are
difficult to simulate using circular or line sources and
barriers. In such cases, flow net analyses or electrical
analogy tests may be used to advantage especially when

the aquifer thickness is irregular and three-dimensional
analyses are required. The use of flow nets for the design
of well systems is described by Mansur and Kaufman
(1962). Methods for conducting three-dimensional electri-
cal analogy tests are described by Duncan (1963), Banks
(1965), and McAnear and Trahan (1972).

4-9. Partially Penetrating Wells

The previous equations are based on the assumption that
the well fully penetrates the aquifer. For practical rea-
sons, it is often necessary to use wells which only par-
tially penetrate the aquifer. The ratio of flow from a
partially penetrating artesian well to that for a fully pene-
trating well at the same drawdown is

(4-13)
Qwp

Qw

Gp

or

(4-14)Qwp GpQw

2πkD(H hw)Gp

ln R
rw

where

Qwp = flow from partially penetrating well

Gp = flow correction factor for partially
penetrating well

An approximate value ofGp can be obtained from the
following equation developed by Kozeny (1933):

(4-15)
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where W/D is well penetration expressed as a decimal.
An alternate equation developed by Muskat (1937)
assuming a constant flow per unit length of well screen is
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whereG(T) is a function ofW/D and approximate values
from Harr (1962) are given in Table 4-1.

Table 4-1
Partially Penetrating Well Function, G(T)

W/D G(T)

0.1 6.4
0.2 5.0
0.3 4.3
0.4 3.5
0.5 2.9
0.6 2.4
0.7 1.9
0.8 1.3
0.9 0.7
1.0 0.0

Values ofGp based on the above values for a typical well
(rw = 1.0 ft) with a radius of 1,000 ft are plotted in
Figure 4-4. An empirical method for calculating the head
at any point for partially penetrating wells is described by
Warriner and Banks (1977). Limitations of empirical
formulas for determining flows from partially penetrating
wells are discussed in TM 5-818-5.

4-10. Effective Well Penetration

In a stratified aquifer, the effective well penetration
usually differs from that computed from the ratio of the

length of well screen to total thickness of aquifer. To
determine the required length of well screen W to achieve
an effective penetration W

__
in a stratified aquifer, the

procedure shown in Figure 4-5 can be used. It is
assumed that the individual strata are anisotropic and each
stratum is transformed into an isotropic stratum in
accordance with the following equation:

(4-17)d d
kh

kv

where

d = transformed vertical dimension

d = actual vertical dimension

kh = permeability in the horizontal direction

kv = permeability in the vertical direction

The horizontal dimension of the problem would remain
unchanged in this transformation. The permeability of the
transformed stratum to be used in all equations for flow
or drawdown is as follows:

(4-18)k khkv

wherek is the transformed coefficient of permeability.
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Figure 4-4. Flow to partially penetrating well with circular source
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Figure 4-5. Determination of actual and effective well penetrations
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