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CHAPTER9

REGRESSION ANALYSIS AND APPLICATION TO REGIONAL STUDIES

9-1. Nature and At)Dlication.

a. General. Regression analysis is the term applied to the analytical procedure for
deriving prediction equations for a variable (dependent) based on given values of one or
more other variables (independent). The dependent variable is the value sought and is to
be related to various explanatory variables which will be known in advance, and which
will be physically related to the dependent variable. For example, the volume of
spring-season runoff from a river basin (dependent variable) might be correlated with the
depth of snow cover in the watershed (explanatory variable). Recorded values of such
variables over a period of years might be graphed and the apparent relation sketched in by
eye. However, regression analysis will generally permit a more reliable determination of
the relation and has the additional advantage of providing a means for evaluating the
reliability of the relation or of estimates based on the relation.

b. Def inition~. The function relating the variables is termed the “regression
equation,” and the proportion of the variance of the dependent variable that is explained
by the regression equation is termed the “coefficient of determination,” which is the
square of the “correlation coefficient.” Correlation is a measure of the association between
two or more variables. Regression equations can be linear or curvilinear, but linear
regression suffices for most applications, and curvilinear regression is therefore not
discussed herein. Often a curvilinear relation can be linearized by using a logarithmic or
other transform of one or more of the variables.

9-2. ~alculation of Regression EauationS.

a. ~imt)le Re~re ssion. In a simple regression (one in which there is only one
independent, or explanatory, variable), the linear regression equation is written:

Y = a+bX (9-1)

in which Y is the dependent variable, X is the independent variable, “a” is the regression
constant, and “b” is the regression coefficient. The coefficient “b” is evaluated from the
tabulated data by use of the following equations

(9-2a)

or

b = RSY/SX (9-2b)

in which y is the deviation of a single value yi from the mean (~) of its series, x is
similarly defined, SYand SXare the respective standard deviations and R is computed by
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Equation 9-11. The regression constant is obtained from the tabulated data by use of the
following equation:

All summations required for a simple linear regression can be obtained using Equations 9-
8 and 9-9a.

b. Multinle Re~res sion. In a multiple regression (one in which there is more than
one explanatory variable) the linear regression equation is written

Y=a+blX1+ b2X2 . . ..+ bMXN (9-4)

In the case of two explanatory variables, the regression coefficients are evaluated from the
tabulated data by solution of the following simultaneous equations

(9-5)fixl)zbl + ~(x1x2)b2 = ~(Yxl)

xx1x2)b1 + zx2)2b1 = XYX2)

In the case of three explanatory variables, the b coefficients can be evaluated from the
tabulated data by solution of the following simultaneous equations

xx1)2b1+ x(x1x2)b2 + xx1x3)b3 = (Yxl) (9-6)

Ix1x2)b1 + Xx2)2b2 + Ex2x3)b3 = (YX2)

~(x1x~)bl + ~x2x3)b2 + ~x3)2b3 = (Yx~)

For cases of more than three explanatory variables, the appropriate set of simultaneous
equations can be easily constructed after studying the patterns of the above two sets of
equations. In such cases, solution of the equations becomes tedious, and considerable time
can be saved by use of the Crout method outlined in reference (51) or (52). Also,
programs are available for solution of simple or multiple linear regression problems on
practically any type of electronic computer. For multiple regression equations, the
regression constant is determined as follows

a=~-bl%l-b2~2....-b~~~ (9-7)

In Equations 9-2, 9-5 and 9-6, the quantities 1(x)2, ~(yx) and ~(xlxz) can be determined
by use of the following equations:
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(9-8)

(9-9a)

X(X1X2)= ~(x1x2)- zxl ~ X2/N (9-9b)

The Correlation Coefficient and Standard Error.

a. m. The correlation coefficient is the square root of the coefficient of
determination, which is the proportion of the variance of the dependent variable that is
explained by the regression equation. A correlation coefficient of 1.0 would correspond
a coefficient of determination of 1.0, which is the highest theoretically possible and
indicates that whenever the values of the explanatory variables are known exactly, the
corresponding value of the dependent variable can be calculated exactly. A correlation
coefficient of 0.5 would correspond to a coefficient of determination of 0.25, which
would indicate that 25 percent of the variance is accounted for and 75 percent
unaccounted for by the regression equation. The remaining variance (error variance)
would be 75 percent of the original variance and the remaining standard error would be

to

the square root of 0.75 (or 87 &rcent) multiplied by the original standard deviation of the
dependent variable. Thus, with a correlation coefficient of 0.5, the average error of
estimate would be 87 percent of the average errors of estimate based simply on the mean
observed value of the dependent variable without a regression analysis.

b. Dete rmination Coefficien~. The sample coefficient of multiple determination (Rz)
can be computed by use of the following equation:

bl ~Yxl) + b2 ~YX2) ... + bMfiYxn)
R2 = (9-lo)

XY)2

In the case of simple correlation, Equation 9-10 resolves to

(9-11)R2 = ~(yX)2/~(y)2 ~X)2

An unbiased estimate of the coefficient of determination is recommended for most
applications, and is computed by the following equation:

(9-12)R2 = l-(1 -R2)(N-1)/df

The number of degrees of freedom (df), is obtained by subtracting the number of
variables (dependent and explanatory) from the number of events tabulated for each
variable.

c. Standard Error. The adjusted standard error (S=) of a set of estimates is the
root-mean-square error of those estimates corrected for the degrees of freedom. On the
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average, about one out of three estimates will have errors greater than the standard error
and about one out of 20 will have errors greater than twice the standard error. The
adjusted error variance is the square of the adjusted standard error. The adjusted
standard error or error variance of estimates based on a regression equation is calculated
from the data used to derive the equation by use of one of the following equations:

s: .

a

Inasmuch as
coefficients.

~(Y)2- b, ~(Yxl) - b2 XYX2)...- bn ~(Yxn)
(9-13a)

df

(1-~2) ~(y)2/(N- 1) (9-13b)

(1-F2)S; (9-13C)

there is some degree of error involved in estimating the regression
the actual standard error of an estimate based on one or more extreme values

of the explanatory variables is somewhat larger than is indicated by the above equations,
but this fact is usually neglected.

d. ~eliabilitv. In addition to considering the amount of variance that is explained by
the regression equation, as indicated by the determination coefficient or the standard
error, it is important to consider the reliability of these indications. There is some chance
that any correlation is accidental, but the higher the correlation and the larger the sample
upon which it is based, the less is the chance that it would occur by accident. Also, the
reliability of a regression equation decreases as the number of independent variables
increases. Ezekiel (8) gives a set of charts illustrating the reliability of correlation
coefficients. It shows, for example, that an unadjusted correlation coefficient (R) of 0.8
based on a simple linear correlation with 12 degrees of freedom could come from a
relationship that has a true value as low as 0.53 in one case out of 20. On the other hand,
the same unadjusted correlation coefficient based on a multiple linear correlation with the
same number of degrees of freedom but with seven independent variables, could come
from a relationship that has a true value as low as zero in one case out of 20. With only 4
degrees of freedom, an unadjusted correlation coefficient of 0.97 would one time in 20
correspond to a true value of 0.8 or lower, in the case of simple correlation, and as low as
zero in a seven-variable multiple correlation. Accordingly, extreme care must be
exercised in the use of multiple correlation in cases based on small samples.

9-4. simD1e Linear Regression ExamDl~.

a. -. An example of a simple linear regression analysis is illustrated on
Figures 9-1 and 9-2. The data for this example are the concurrent flows at two stations
in Georgia for which a two-station comparison is desired (see Section 3-7). The long
record station is the Chattooga, so the flows for this station are selected as X; therefore
the flows for the short record station (Tallulah) are assigned to Y.

b. Phvsical Relationship. The values in the table are the annuaJ peak flows for the
water years 1965-1985 (21 values). These two stations are less than 20 miles apart and are
likely to be subject to the same storm events; therefore, the first requirement of a
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.———
Chattooga River Iallulch River

—------

F1OU Log F(OW Log

Year x’ x 71 Y

1965 27200 4.434568 7460 3.871572
1966 13400 4.127104 5140 3.710963
1967 15400 4.187520 2800 3.447158
1968 5620 3.749736 3100 3.491361
1969 14700 4.167317 2470 3.392696
1970 3480 3.541579 2070 3.303196
1971 3290 3.517195 976 2.989449
1972 7440 3.871572 2160 3.334453
1973 19600 4.292256 8500 3.929418
1974 6400 3.806179 4660 3.668385
1975 6340 3.802089 2410 3.382017
1976 18500 4.267171 6530 3.814913
1977 13000 4.113943 3580 3.553883
1978 7850 3.894869 4090 3.611723
1979 14800 4.170261 6240 3.795184
1980 10900 4.037426 2880 3.459392
1981 4120 3.614897 1600 3.204119
1982 5000 3.698970 t960 3.292256
1983 7910 3.898176 3260 3.513217
1984 4810 3.682145 2000 3.301029
1985 4740 3.675778 1010 3.006321

b z j.j3351/I.&33922

= 0.79049

a s 3.47956 - (0.79069)(3.93099)

= 0.37213

R2 ■ (1.13351 )2/(1.43393)(1.36115)

■ 0.658290

Ez=l - (1-0.65892)(21-1)/(21-2)

= 0.64031

Contputationa for standard ●rror:

S 2 = (1-0.640312 )(1.36115 )/(21-1)
●

= 0.02648

se = 0.15&6

Regression ●quation: Y = 0.37213 + 0.79049x

y,= 2_356~,0.79

XX = 82.55075 ZY = 73.07071

XX2= 325.93995 ZY2= 255.61486

i= 3.93099 i= 3.47956

(X XY)2 = 288. Z748L

(Z X)2
— = 324.50602n

( ZY)2—-— ,
N 254.25371

xx ZY——. .
N 287.26008

X2 = 1.43393 (by ●quation 9-8)

Xy = 1.13351 (,, ,, 9.9a)

Y2 = 1.26115 (4, ,8 9-8)

(by ●quation 9-2a)

(by ●quation 9-3)

(by ●quation 9.11)

(by ●quation 9-12)

(by equation 9-13b)

(by equation 9-1)

(without logarithms)

Figure 9-1. Computation of Simple Linear Regression Coefficients.
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regression analysis (logical physical relationship) is satisfied. Because runoff is a
multiplicative factor of precipitation and drainage area, the logarithmic transformation is
likely to be appropriate when comparing two stations with different drainage areas. A
linear correlation analysis was made, as illustrated on Figure 9-1, using equations given in
Section 9-2. The annual peaks for the each station are plotted against each other on
Figure 9-2.

c. Re~ress ion Eauation. The regression equation is plotted as Curve A on Figure
9-2. This curve represents the best estimate of what the annual peak Tallulah River
would be given the observed annual peak on the Chattooga River. Although not
computed in Figure 9-1, Curve B represents the regression line for estimating the annual
peak flow for the Chattooga River given an observed annual peak on the Tallulah River.

~&3 *~4

CHATTO06A RIVER ANNUALPEAK (X’

curve A - Regression 1tne with ~ ss dependent vsriabke

Curve B - Regression 1 ine uith X ss dependent verieble

Figure 9-2. Illustration of Simple Regression.
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d. Reliability. In addition to the curve of best fit, an approximate confidence
interval can be established at a distance of plus and minus 2 standard errors from Curve
A. Because logarithms are used in the regression analysis, the effect of adding (or
subtracting) twice the standard error to the estimate is equivalent to multiplying (or
dividing) the annual peak values by the antilogarithm of twice the standard error. In this
case, the standard error is 0.156, and the antilogarithm of twice this quantity is 2.05.
Hence, values of annual peak flow represented by the confidence interval curves are those
of Curve A multiplied and divided respectively by 2.05. There is a 95 percent chance that
the true value of the dependent variable (Y) for a single observed independent value (X)
will lie between these limits. The confidence interval is not correct for repeated
predictions using the same sample (6).

9-5. Factors ResDonsible fo r Nondete rmination.

a. -. Factors responsible for correlations being less than 1.0 (perfect
correlation) consist of pertinent factors not considered in the analysis and of errors in the
measurement of those factors considered. If the effect of measurement errors is
appreciable, it is possible in some cases to evaluate the standard error of measurement of
each variable (see Paragraph 9- 3c) and to adjust the correlation results from such effects.

b. Measurem ent Errors. If an appreciable portion of the variance of Y (dependent
variable) is attributable to measurement errors and these errors are random, then the
regression equation would be more reliable than is indicated by the standard error of
estimate computed from Equation 9-13. This is because the departure of some of the
points from the regression line on Figure 9-2 is artificially increased by measurement
errors and therefore exaggerates the unreliability of the regression function. In such a
case, the curve is generally closer to the true values than to the erroneous observed values.
Where there is large memurement error of the dependent variable, the standard error of
estimate should be obtained by taking the square root of the difference of the error
variance obtained from Equation 9-13 and the measurement error variance. If well over
half of the variance of the points from the best-fit line is attributable to measurement
error in the dependent variable, then the regression line would actually yield a better
estimate of a value than the original measurement. If appreciable errors exist in the
values of an explanatory variable, the regression coefficient and constant will be affected,
and erroneous estimates will result. Hence, it is important that values of the explanatory
variables be accurately determined, if possible.

c. Other Factorq. In the example used in Section 9-4 there may well be factors
responsible for brief periods of high intensities that do not contribute appreciably to
annual precipitation. Consequently, some locations with extremely high mean annual
precipitation may have maximum short-time intensities that are not correspondingly high,
and vice versa. Therefore, the station having the highest mean annual precipitation would
not automatically have the highest short-time intensity, but would in general have
something less than this. On the other hand, if mean annual precipitation were made the
dependent variable, the station having the highest short-time intensity would be expected
to have something less than the highest value of mean annual precipitation. Thus, by
interchanging the variables, a change in the regression line is effected. Curve B of Figure
9-2 is the regression curve obtained by interchanging the variables Y and X. As there is a
considerable difference in the two regression curves, it is important to use the variable
whose value is to be calculated from the regression equation as the dependent variable in

those cases where important factors have not been considered in the analysis.
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d. Avera~e SloD~. If it is obvious that all of the pertinent variables are included in
the analysis, then the variance of the points about the regression line is due entirely to
measurement errors, and the resulting difference in slope of the regression lines is entirely
artificial. In cases where all pertinent variables are considered and most of the
measurement error is in one variable, that variable should be used as the dependent
variable. Its errors will then not affect the slope of the regression line. In other cases
where all pertinent variables are considered, an average slope should be used. An average
slope can be obtained by use of the following equation

b = SY/SX (9-14)

9-6. ~.

a. H. An example of a multiple linear regression analysis is illustrated on
Figure 9-3. In this case, the volume of spring runoff is correlated with the water
equivalent of the snow cover measured on April 1, the winter low-water flow (index of
ground water) and the precipitation falling on the area during April. Here again, it was
determined that logarithms of the values would be used in the regression equation.
Although loss of 4 degrees of freedom of 12 available, as in this case, is not ordinarily
desirable, the adjusted correlation coefficient attained (0.94) is particularly high, and the
equation is consequently fairly reliable. The computations in Figure 9-3 were made with
the HEC computer program MLRP (reference 50).

b. Lo~arithmic Transformat ion. In determining whether logarithms should be used
for the dependent variable as above, questions such as the following should be considered
“Would an increase in snow cover contribute a greater increment to runoff under
conditions of high ground water (wet ground conditions) than under conditions of low
ground water?” If the answer is yes, then a logarithmic dependent variable (by which the
effects are multiplied together) would be superior to an arithmetic dependent variable (by
which the effects are added together). Logarithms should be used for the explanatory
variables when they would increase the linearity of the relationship. Usually logarithms
should be taken of values that have a natural lower limit of zero and a natural upper limit
that is large compared to the values used in the study.

c. Fun ction of Multit)le Regress ion. It should be recognized that multiple regression
performs a function that is difficult to perform graphically. Reliability of the results,
however, is highly dependent on the availability of a large sampling of all important
factors that influence the dependent variable. In this case, the standard error of an
estimate as shown on Figure 9-3 is approximately 0.038, which, when added to a
logarithm of a value, is equivalent to multiplying that value by 1.09. Thus, the standard
error is about 9 percent, and the 1-in-20 error is roughly 18 percent. As discussed in
Paragraph 9-3d, however, the calculated correlation coefficient may be accidentally high.

9-7. Partial Correlation. The value gained by using any single variable (such as April
precipitation) in a regression equation can be measured by making a second correlation
study using all of the variables of the regression equation except that one. The loss in
correlation by omitting that variable is expressed in terms of the partial correlation
coefficient. The square of the partial correlation coefficient is obtained as follows:
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INPUT DATA

00s No

1
2
3
4
5
6
7
8
9

10
11
12

OBSID

1936
1937
1938
7939
1940
1941
1942
7943
1944
19.45
1946
1947

STATISTICS OF OATA

VARIABLE

LOG SNO

LOG W

LOG PRCP

LOG Q

LOG Q

.939

.945
1.052

.744

.666
1.081
1.060
.892
1.021
.920
.755
.960

AVERAGE

.2960

.4005

.9421

.9196

LOG SNO

.399

.343

.369

.266

.181

.297

.2W

.354

.295

.321

.168

.280

VARIANCE

.0050

.0028

.0572

.0181

UNBIASED CORRELATION COEFFI Cl ENTS (R2

VARIABLE LOG SNO LOG GW LOG PRCP

LOG SNO 1.0000 .0000

LOG W .0000 1.0000

LOG PRCP -.0459 .127s

LOG Q .6308 .4170

REGRESSION RESULTS

INOEPENOENT REGRESSION

VARIABLE COEFFICIENT

LOG SNO 1.621806
LOG GU 1.012912

LOO PRCP .2~390

REGRESSION R

CONSTANT SWARE

-.223698 .9437

-.0459
.127s

1.0000
.2011

LOG GkJ LOG PRCP

.325 .710

.385 .634

.408 .886

.428 .581

.316 1.027

.460 1.315

.511 1.097

.379 .707

.395 1.240

.376 1.091

.413 1.038

.410 .979

STANDARD
OEVIATIDN

.0704

.0531

.2392

.1346 DEPENOENT

LOG Q

.6308

.6170

.2011
1.0000

PARTIAL

DETERMINATION

COEFFICIENT

.9106

.6816

.7451

UNBIASEO STANDARD

R ERRU OF

SWARE ESTIMATE

.9226 .0375

VARIABLE

Figure 9-3. Example Multiple Linear Regression Analysis.

9-9



EM 1110-2-1415
5 Mar 93

rY:.12
= 1 - (1-Ry:123)/( 1-R;12) (9-15)

in which the subscript to the left of the decimal indicates the variable whose partial
correlation coefficient is being computed, and the subscripts on the right of the decimal
indicate the independent variables. An approximation of the partial correlation can
sometimes be made by use of beta coefficients. After the regression equation has been
calculated, beta coefficients are very easy to obtain by use of the following equation:

P. = bnSJSY (9-16)

The beta coefficients of the variables are proportional to the influence of each variable on
the result. While the partial correlation coefficient measures the increase in correlation
that is obtained by addition of one more explanatory variable to the correlation study, the
beta coefficient is a measure of the proportional influence of a given explanatory variable
on the dependent variable. These two coefficients are related closely only when there is
no interdependence among the various explanatory variables. However, some explanatory
variables naturally correlate with each other, and when one is removed from the equation,
the other will take over some of its weight in the equation. For this reason, it must be
kept in mind that beta coefficien~ indicate partial correlation only approximately.

9-8. V rifi i~~. Acquisition of basic data after a regression
analysis has been completed will provide an opportunity for making a check of the results.
This is done simply by comparing the values of the dependent variable observed, with
corresponding values calculated from the regression equation. The differences are the
errors of estimate, and their root-mean-square is an estimate of the standard error of the
regression-equation estimates (Paragraph 9-3). This standard error can be compared to
that already established in Equation 9-13. If the difference is not signi~lcant, there is no
reason to suspect the regression equation of being invalid, but if the difference is large,
the regression equation and standard error should be recalculated using the additional data
acquired.

9-9. ~ Techniques. Where the relationships among variables used
in a regression analysis are expected to be curvilinear and a simple transformation cannot
be employed to make these relationships linear, graphical regression methods may prove
useful. A satisfactory graphical analysis, however, requires a relatively large number of
observations and tedious computations. The general theory employed is similar to that
discussed above for linear regression. Methods used wiil not be discussed herein, but can
be found in references 8 and 27.

9-10. Practical G uideline$. The most important thing to remember in making
correlation studies is that accidental correlations occur frequently, particularly when the
number of observations is small. For this reason, variables should be correlated only when
there is reason to believe that there is a physical relationship. It is helpful to make
preliminary examination of relationships between two or more variables by graphical
plotting. This is particularly helpful for determining whether a relationship is linear and
in selecting a transformation for converting curvilinear relationships to linear
relationships. It should also be remembered that the chance of accidentally high

9-1o



EM 1110-2-1415
5 Mar 93

correlation increases with the number of correlations tried. If a variable being studied is
tested against a dozen other variables at random, there is a chance that one of these will
produce a good correlation, even though there may be no physical relation between the
two. In general, the results of correlation analyses should be examined to assure that the
derived relationship is reasonable. For example, if streamflow is correlated with
precipitation and drainage area size, and the regression equation relates streamflow to
some power of the drainage area greater than one, a maximum exponent value of one
should be used, because the flow per square mile usually does not increase with drainage
area when other factors remain constant.

9-11. Re~ional Freauencv Analvsi$.

a. -. In order to improve flood frequency estimates and to obtain estimates
for locations where runoff records are not available, regional frequency studies may be
utilized. Procedures described herein consist of correlating the mean and standard
deviation of annual maximum flow values with pertinent drainage basin characteristics by
use of multiple linear regression procedures. The same principles can be followed using
graphical frequency and correlation techniques where these are more appropriate.

b. Freauencv Statistic~. A regional frequency correlation study is based on the two
principal frequency statistics: the mean and standard deviation of annual maximum flow
logarithms. Prior to relating these frequency statistics to drainage basin characteristics, it
is essential that the best possible estimate of each frequency statistic be made. This is
done by adjusting short-record values by the use of longer records at nearby locations.
When many stations are involved, it is best to select long-record base stations for each
portion of the region. It might be desirable to adjust the base station statistics by use of
the one or two longest-record stations in the region, and then adjust the short-record
station values by use of the nearest or most appropriate base station. Methods of adjusting
statistics are discussed in Section 3-7.

c. ~raina~e-Basin Charact eristic~. A regional analysis involves the determination of
the main factors responsible for differences in precipitation or runoff regimes between
different locations. This would be done by correlating important factors with the
long-record mean and with the long-record standard deviation of the frequency curve for
each station (the long-record values are those based on extension of the records as
discussed in Section 3-7). Statistics based on precipitation measurements in mountainous
terrain might be correlated with the following factors:

- Elevation of station

- General slope of surrounding terrain

- Orientation of that slope

- Elevation of windward barrier

- Exposure of gage

- Distance of leeward controlling ridge
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Statistics based on runoff measurements might be correlated with the following factors:

d.

Drainage area (contributing)

Stream length

Slope of drainage area or of main channel

Surface storage (lakes and swamps)

Mean annual rainfall

Number of rainy days per year

Infiltration characteristics

Urbanized Area

Linear RelationshiD$. In order to obtain satisfactory results using multiple linear
regression techniques, all variables must be expressed so that the relation between the
independent and any dependent variable can be expected to be linear, and so that the
interaction between two independent variables is reasonable. An illustration of the first
condition is the relation between rainfall and runoff. If the runoff coefficient is sensibly
constant, as in the case of urban or airport drainage, then runoff can be expected to bear a
linear relation to rainfall. However, in many cases initial losses and infiltration losses
cause a marked curvature in the relationship. Ordinarily, it will be found that the
logarithm of runoff is very nearly a linear function of rainfall, regardless of loss rates,
and in such cases, linear correlation of logarithms would be most suitable, An illustration
of the second condition is the relation between rainfall, D, drainage area, A, and runoff,
Q. If the relation used for correlation is as follows:

Q = aD+bA+c (9-17)

then it can be seen that one inch change in precipitation would add the same amount of
flow, regardless of the size of drainage area. This is not reasonable, but again a
transformation to logarithms would yield a reasonable relation

log Q=dlog D+elog A+logf (9-18)

or transformed

Q= fDdAe (9-19)

Thus, if logarithms of certain variables are used, doubling one independent quantity will
multiply the dependent variable by a fixed ratio, regardless of what fixed values the other
independent variables have. This particular relationship is reasonable and can be easily
visualized after a little study. There is no simple rule for deciding when to use
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however, when the variable has a
provide for near-uniform variance

e. FxamDle of Re~ional Correlation. An illustrative example of a regional
correlation analysis for the mean log of annual flood peaks (Y) with several basin
characteristics is shown on Figure 9-4. In this example, the dependent variable is
primarily related to the drainage area size, but precipitation and slope added a small
amount to the adjusted determination coefficient. The regression equation selected for the
regional analysis included only drainage area as an independent variable.

f. Select ion of Use ful Variables. In the regression equations shown on Figure 9-4,
the adjusted determination coefficient increases as variables are deleted according to their
lack of ability to contribute to the determination. This increase is because there is a
significant increase in the degrees of freedom as each variable is deleted for this small
sample of 20 observations. Both the adjusted determination coefficient and standard error
of estimate should be reviewed to determine how many variables are included in the
adopted regression equation. Even in the case of a slight increase in correlation obtained
by adding a variable, consideration of the increased unreliability of R as discussed in
Section 9-3 might indicate that the factor should be eliminated in cases of small samples.
The simplest equation that provides an adequate predictive capability should be selected.
In this example; there is some loss in determination in only using drainage area, but this
simple equation is adopted to illustrate regional analysis. The adopted equation is

log Y = 1.586 + 0.962 log (AREA) (9-20)

or
Y = 38.5 AREA”9Q (9-21)

The ~2 for this equation is 0.839.

Use of M~. Many hydrologic variables cannot be expressed numerically.
Examgples are soil characteristics, vegetal cover, and geology. For this reason, numerical
regional analysis will explain only a portion of the regional variation of runoff
frequencies. The remaining unexplained variance is contained in the regression errors,
which varies from station to station. These regression errors are computed by subtracting
the predicted values from the observed values for each station. These errors can then be
plotted on a regional map at the centroid of each station’s area, and lines of equal values
drawn (perhaps using soils, vegetation, or topographic maps as a guide). Combining this
regional error with the regression equation should be much better than using the single
constant for the entire region. In smoothing lines on such a map, consideration should be
given to the reliability of computed statistics. Equations 8-1 and 8-2 can be used to
compute the standard errors of estimating means and standard deviations. In Figure 9-5
for example, Station 5340 (observation 11) had 66 years of record and the standard error
for the mean was 0.028. There is about one chance in three that the mean is in error by
more than 0.029 or about one chance in twenty that the mean is in error by more than
0.056 (twice the standard error). Figure 9-6 shows a map of the errors and Figure 9-5
shows the regional map values for each station and evaluates the worth of the map. The
map has a mean square error of 0.0112 compared to that of 0.0356 for the regression
equation alone.
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Figure 9-4. Regression Analysis for Regional Frequency Computations.
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Figure 9-6. Regional Map of Regression Errors.
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h. Summarv o fProcedur~. A regional analysis of precipitation or flood-flow
frequencies is generally accomplished by performing the following steps:

( 1) Select long-record base stations within the region as required for extension of
records at each of the short-record stations.

(2) Tabulate the maximum events of each station.

(3) Transform the data to logarithms and calculate ~, S and, if appropriate, G
(Equations 3-1, 3-2 and 3-3) for each base station.

(4) Calculate z and S for each other station and for the corresponding values of the
base station, and calculate the correlation coefficient (Equation 3- 16).

(5) Adjust all values of% and S by use of the base station, (Equations 3-17 and 3-
19). (If any base station is first adjusted by use of a longer-record base station, the
longer-record statistics should be used for all subsequent adjustments.)

(6) S~ect meteorological and drainage basin parameters that are expected to correlate
with X and S, and tabulate the values for each drainage basin or representative area.

(7) Calculate the regression equations relating ~ and S to the basin characteristics,
using procedures explained in Section 9-2, and compute the corresponding
determination coefficients.

(8) Eliminate variables in turn that contribute the least to the determination
coefficient, recomputing the determination coefficient each time, and select the
regression equation having the highest adjusted determination coefficient, or one
with fewer variables if the adjusted determination coef flcient is nearly the same.

(9) Compute the regression errors for each station, plot on a suit~ble map, and draw
isopleths of the regression errors for the regression equations of X (see Figures 9-5
and 9-6 fo~ an example) and S considering the standard error for each computed, or
adjusted, X and S. Note that an alternate procedure is to add the regression constant
to each error value and develop a map of this combined value. This procedure
eliminates the need to keep the regression constant in the regression equation as the
mapped value now includes the regression constant.

(10) A frequency curve can be computed for any ungaged basin in the area covered
within the mapped re~on by using the adopted regression equations and appropriate
map values to obtain X and S, and then using the procedures discussed in Section 3-2
to compute several points to define the frequency curve. (It may also be necessary to
develop regional (generalized) values of the skew coefficient if the Pearson type III
distribution is considered appropriate. The next section describes the necessary steps
to compute a generalized skew coefficient.)

i. e er Ii~~. Skew coefficients for use in hydrologic studies
should be based on regional studies. Values based on individual records are highly
unreliable. Figure 9-7 is a plot of skew coefficients sequentially recomputed after adding
the annual peak for the given year. Note that, after 1950, the skew coefficient was at a
at a minimum of about 0.5 in 1954 and maximum of about 1.9 in 1955, only one year
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apart. The procedures for developing generalized skew values are generally set forth in
Bulletin 17B (pages 10- 15).

ln summary, it is recommended that

( 1) the stations used in the study have 25 or more years of data,

(2) at least 40 stations be used in the analysis, or at least all stations surrounding the
area within 100 miles should be included,

(3) the skew values should be plotted at the centroid of the basins to determine if
any geographic or topographic trends are present,

(4) a prediction equation should be developed to relate the computed skew
coefficients to watershed and climate variables,

(5) the arithmetic mean of at least 20 stations, if possible, in an area of reasonably
homogeneous hydrology should be computed, and

(6) then select the method that provides the most accurate estimation of the skew
coefficient (smallest mean-square error).

In addition to the above guidelines, care should be taken to select stations without
significant man-made changes such as reservoirs, urbanization, etc.
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