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ENGINEERING AND DESIGN :
HYDROLOGIC FREQUENCY ANALYSIS
CHAPTER |
INTRODUCTION
1-1. Purpose and Scope. This manual provides guidance in applying statistical principles

to the analysis of hydrologic data for Corps of Engineers Civil Works activities. The text
illustrates, by example, many of the statistical techniques appropriate for hydrologic
problems. The basic theory is usually not provided, but references are provided for those
who wish to research the techniques in more detail.

1-2. References. The techniques described herein are taken principally from "Guidelines
for Determining Flood Flow Frequency” (46)', "Statistical Methods in Hydrology” (1), and
"Hydrologic Frequency Analysis® (41). References cited in the text and a selected
bibliography of literature pertaining to frequency analysis techniques are contained in
Appendix A.

1-3. Definitions. Appendix B contains a list of definitions of terms common to
hydrologic frequency analysis and symbols used in this manual.

1-4. Need for Hvdrologic Frequency Estimates.

a. Applications. Frequency estimates of hydrologic, climatic and economic data are
required for the planning, design and evaluation of water management plans. These plans
may consist of combinations of structural measures such as reservoirs, levees, channels,
pumping plants, hydroelectric power plants, etc., and nonstructural measures such as flood
proofing, zoning, insurance programs, water use priorities, etc. The data to be analyzed
could be streamflows, precipitation amounts, sediment loads, river stages, lake stages,
storm surge levels, flood damage, water demands, etc. The probability estimates from
these data are used in evaluating the economic, social and environmental effects of the
proposed management action. '

b. Objective. The objective of frequency analysis in a hydrologic context is to infer
the probability that various size events will be exceeded or not exceeded from a given
sample of recorded events. Two basic problems exist for most hydrologic applications.
First the sample is usually small, by statistical standards, resulting in uncertainty as to the
true probability. And secondly, a single theoretical frequency distribution does not always
fit a particular data-type equally well in all applications. This manual provides guidance
in fitting frequency distributions and construction of confidence limits. Techniques are
presented which can possibly reduce the errors caused by small sample sizes. Also, some
types of data are noted which usually do not fit any theoretical distributions.

c. General Guidance. Frequency analysis should not be done without consideration
of the primary application of the results. The application will have a bearing on the type
of analysis (annual series or partial duration series), number of stations to be included,

' Numbered references refer to Appendix A, Selected Bibliography.

1-1
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whether regulated frequency curves will be needed, etc. A frequency study should be
well coordinated with the hydrologist, the planner and the economist.

1-5. Need for Professional Judgment. It is not possible to define a set of procedures that

can be rigidly applied to each frequency determination. There may be applications where
more complex joint or conditional frequency methods, that were considered beyond the
scope of this guidance, will be required. Statistical analyses alone will not resolve all
frequency problems. The user of these techniques must insure proper application and
interpretation has been made. The judgment of a professional experienced in hydrologic
analysis should always be used in concert with these techniques.
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CHAPTER 2
FREQUENCY ANALYSIS

2-1. Definition.
a. Fr requency. Many of the statistical techniques that are applied to hydrologic data

nferences to be made about particular attributes of the r’ln!n\ can he Iahalad

anahla
enable in nces to be made about particular attributes of data) can be labeled
ith the term "frequency analysis” techniques. The term "frequency" usually connotes a
count (number) of events of a certain magnitude. To have a perspective of the importance
of the count, the total number of events (sample size) must also be known. Sometimes the
number of events within a specified time is used to give meaning to the count, e.g., two
daily flows were this low in 43 years. The probability of a certain magnitude event
recurring again in the future, if the variable describing the events is continuous, (as are
most hydrologic variables), is near zero. Therefore, it is necessary to establish class
intervals (arbitrary subdivisions of the range) and define the frequency as the number of
events that occur within a class interval, A pictorial display of the freguencies within

each class interval is called a histogram (also known as a frequency polygon).

~~

to

i

. Relative Fregquency. Another means of representing the frequency is to compute
the relative frequency. The relative frequency is simply the number of events in the class
intervai divided by the totai number of events:

f, =n/N (2-1)

f. = relative frequency of events in class interval i
n. = number of events in interval i

N = total number of events

A graph of the relative frequency values is called a frequency distribution or histogram,
Figure 2-1a. As the number of observations approaches infinity and the class interval size
approaches zero, the enveloping line of the f requency dxstnbunon wxll approach a smooth

Mrrewrn Thiin e 1n in tammend tha menhablilies: damecitey Licmatinm Miaien 1\

curve. 11113 CUrve 1S ermed uic plUUdUlllly ucubuy luuuuuu \rlsuu: 4']4}

c. Cumulative Freguency. In hydrologic studies, the probability of some magnitude
bemg exceeded (or not exceeded) is usually the primary interest. Presentauon of the data
in this form is accomplished by accumulating the probability (area) under the probability
density function. This curve is termed the cumulative distribution function. In most
statistical texts, the area is accumulated from the smallest event to the largest. The
accumulated area then represents non-exceedance probability or percentage (Figure 2-1b).
It is more common in hydrologic studies to accumulate the area from the largest event to

tha emallact Aran arcrnumulatad in thic mannar ranracante avraadanca neahahility A
Lid%w Dilidiliwab, FRAWE BwwUIlMWMIGLWYW 111 LD MAGiIIAVI IV I WVOoWILW VAWVLVUGLLIWY Pl ViAWl J Wi

percentage.
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Potomac River at Point of Rocks, MD
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Figure 2-1a. Histogram and Probability Density Function.
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Figure 2-1b. Sample and Theoretical Cumulative Distribution Functions.
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a. Computation. The computation of flow-duration curves was probably the first
attempt to analyze hydrologic data by statistical techniques. The events for flow-duration
curves are usually mean daily flow values. One of the first steps in preparation of a
duration curve is dividing the range of the data into class intervals. Table 2-1 shows the
class intervals of daily flows input into the computer program STATS (58) for a duration
anaiysis of Fishkiii Creek at Beacon, New York. The fiows tend to be grouped near the
low end with very few large flows. Therefore, the relative frequency curve is skewed to

the right. It has been found that making the logarithmic transform reduces the skewness

of the curve. The class intervals in Table 2-1 are based on a logarithmic distribution of
the flows. Plotting the data in Table 2-1 on log-probability paper, Figure 2-2, provides a
plot that is easily read at the extremities of the data. The daily flow-duration curve
cannot be considered a frequency curve in the true sense, because the daily flow on a
particular day is highly correlated with the flow on the preceding day. For this reason,
the abscissa is labeled "percent of time."

Fishkill Cresk at Beacaon, NY 1946-1968
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Figure 2-2. Daily Flow-Duration Curve.
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Table 2-1. Daily Flow-Duration Data and Interpolated Values.

-DURATION DATA- FISHKILL CR AT BEACON, NY - DAILY FLOWS

AR AR A A A4 Sl A A d A A dd I A A D A I A d i Al a il il Al A i Al il ddddt izt llezy ey

- LOWER NUMBER PERCENT + LOWER NUMBER PERCENT
* CLASS CLASS IN ACCUM EQUAL OR * CLASS CLASS IN ACCUM EQUAL OR *
* NUMBER LIMIT CLASS NUMBER EXCEED * NUMBER LIMIT CLASS NUMBER EXCEED
. FLOW,CFS L FLOW,CFS *
L bbbt R A e L L L epges W e ot o o e e = - ——— - L 4
. 1 1.00 S 8766 100.00 * 16 100.00 sas 5606 63.95 »
- 2 2.00 [ 8761 99.94 * 17 150.00 783 4718 53.82 ~
- 3 3.00 8 8757 99.90 * 18 200.00 1246 3935 44.89
- 4 4.00 22 8748 89.81 19 300.00 822 2689 30.68 *
ol 5 5.00 37 8727 99.56 20 400.00 484 1867 21.30 +
- 6 6.00 66 8680 99.13 » 21 500.00 340 1383 15.78 =
- 7 8.00 95 8624 98.38 22 600.00 465 1043 11.80 =~
- 8 10.00 254 8529 97.30 ~ 23 800.00 239 578 6.59 =~
* 9 15.00 261 8275 94 .40 * 24 1000.00 251 339 3.87 ~
- 10 20.00 423 8014 91.42 25 1500.00 47 88 1.00 +
- 11 30.00 405 7591 86.60 26 2000.00 32 41 0.47 *
- 12 40.00 358 71886 81.98 » 27 3000.00 ] 2] 0.10 *
- 13 50.00 332 6827 77.88 28 4000.00 0 3 0.03 *
- 14 60.00 480 6495 74.08 29 6000.00 3 3 0.03 ~
»* 15 80.00 408 6015 68.62 =« 30 7000.00 0 0 0.00 *

LA A A Al g A d A 2l 2 A dadd DIl 2 Pl a2 22222223221 22222222222 2222222222 2.)

-INTERPOLATED DURATION CURVE- FISHKILL CR AT BEACON, NY - DAILY FLOWS

AR A Al Al DL A2l d g s d a2 Al il el 2l el edss sty

- PERCERT  INTERPOLATED PERCERT  INTERPOLATED b

*

hd EQUAL OR MAGNITUDE - EQUAL OR MAGNITUDE *
* EXCEED FLOW,CFS hd EXCEED FLOW,CFS *
W o e o i - L C T - »
* 0.01 6870.0 A 60.00 118.0 .
d 0.05 3480.0 - 70.00 74.5 *
* 0.10 3020.0 - 80.00 &4.7 -
* 0.20 2530.0 - 85.00 33.4 »*
* 0.50 1960.0 ol 90.00 22.7 *
* 1.00 1500.0 * 85.00 14.0 hd
* 2.00 1230.0 * 98.00 8.8 *
* 5.00 803.0 hd $9.00 6.3 hd
* 10.00 658.0 - 99.50 5.2 d
d 15.00 518.0 * 99.80 4.0 *
b 20.00 420.0 - 99.90 2.9 b
* 30.00 306.0 - 99.85 1.9 -
* 40.00 230.0 " 99.99 1.5 o
* 50.00 171.0 - 100.00 1.1 *
Ladd A A A A4 a4 A aaad e a2 a2 i el a2l il tad a2 tas il lileyly

Output from HEC computer program STATS.

b. Uses. Duration curves are useful in assessing the general low flow characteristics
of a stream. If the lower end drops rapidly to the probability scale, the stream has a low
ground-water storage and, therefore, a low or no sustained flow. The overall slope of the
flow-duration curve is an indication of the flow variability in the stream. Specific uses
that have been made of duration curves are: 1) assessing the hydropower potential of
run-of -river plants; 2) determining minimum flow release; 3) water quality studies; 4)
sediment yield studies; and 5) comparing yield potential of basins. It must be
remembered that the chronology of the flows is lost in the assembly of data for duration
curves. For some studies, the low-flow sequence, or persistence, may be more important
(see Chapter 4).

2-4
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c. Monthlv Curves. Occasionally the distribution of the flows during particular
seasons of the year is of interest. Figure 2-3 illustrates a way of presenting
daily-flow-duration curves that were computed from the daily flows during each month.

d. Stage-Duration. Stage-duration curves are often used to establish vertical
navigation clearances for bridges. If there have been no changes in the discharge versus
stage relationship (rating curve), then the stages may be used instead of flows to compute
a stage-duration curve. But, if there have been significant changes to the rating curve
(because of major levee construction, for instance) then the stage-duration curve should
be derived from the flow~duration curve and the latest rating curve. The log
transformation is not recommended for stages.

FISHKILL CREEK

ioooo 'V"!'T"!I"ll!l"lr‘r"jﬁl‘!"l']ll"l!"'"!"'l!ﬁ'W"
o 1000 —— 5% 2
[=]
S ——— 10x U
[8)
zZ —— 30x% X
x —— S0X W
S X
@ 100 T~— 70x [
A —— 90X Y
-
L ¢
- T~— 9sx
——— 99X §
10 NV
1 llillllilllijllllillllilJ_l,lil_LlliJJll.JllLillllilj_lJ
UAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
MONTH

Figure 2-3. Daily Flow-Duration Curves for Each Month.
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e. Future Probabilities. A duration curve is usually based on a fairly large sample
size. For instance, Figure 2-2 is based on 8766 daily values (Table 2-1). Even though the
observed data can be used to make inferences about future probabilities, conclusions
drawn from information at the extremities can be misleading. The data indicate there is a
zero percent chance of exceeding 6970 cfs, however, it is known that there is a finite
probability of experiencing a larger flow. And similarly, there is some chance of
experiencing a lower flow than the recorded 1.1 cfs. Therefore, some other means is
needed for computing the probabilities of infrequent future events. Section 2-4 describes
the procedure for assigning probabilities to independent events.

2-3. Selection of Data for Frequency Analysis.

. ion of Results. The primary question to be asked
before selection of data for a frequency study is: how will the frequency estimates be
used? If the frequency curve is to be used for estimating damage that is related to the
peak flow in a stream, maximum peak flows should be selected from the record. If the
damage is best related to a longer duration of flow, the mean flow for several days’
duration may be appropriate. For example, a reservoir’'s behavior may be related to the
3-day or 10-day rain flood volume or to the seasonal snowmelt volume. Occasionally, it is
necessary to select a related variable in lieu of the one desired. For example, where
mean-daily flow records are more complete than the records of peak flows, it may be
more desirable to derive a frequency curve of mean-daily flows and then, from the
computed curve, derive a peak-flow curve by means of an empirical relation between
mean daily flows and peak flows. All reasonably independent values should be selected,
but only the annual maximum events should be selected when the application of analytical
procedures discussed in Chapter 3 is contemplated.

b. Uniformity of Data.

(1) General Considerations. Data selected for a frequency study must measure the
same aspect of each event (such as peak flow, mean-daily flow, or flood volume for a
specified duration), and each event must result from a uniform set of hydrologic and
operational factors. For example, it would be improper to combine items from old records
that are reported as peak flows but are in fact only daily readings, with newer records
where the instantaneous peak was actually measured. Similarly, care should be exercised
when there has been significant change in upstream storage regulation during the period
of record to avoid combining unlike events into a single series. In such a case, the entire
record should be adjusted to a uniform condition (see Sections 2-3f and 3-9). Data should
always be screened for errors. Errors have been noted in published reports of annual
flood peaks. And, errors have been found in the computer files of annual flood peaks.
The transfer of data to either paper or a computer file always increases the probability
that errors have been accidentally introduced.

(2) Mixed Populations. Hydrologic factors and relationships during a general winter
rain flood are usually quite different from those during a spring snowmelt flood or during
a local summer cloudburst flood. Where two or more types of floods are distinct and do
not occur predominately in mutual combinations, they should not be combined into a
single series for frequency analysis. It is usually more reliable in such cases to segregate
the data in accordance with type and to combine only the final curves, if necessary. In
the Sierra Nevada region of California and Nevada, frequency studies are made separately
for rain floods which occur principally during the months of November through March,

2-6
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each of these two seasons are segregated strictly by caus those predominantly caused by
snowmelt and those predominantly caused by rain. In desert reg.,ns, summer
thunderstorms should be excluded from frequency studies of winter rain flood or spring
snowmelt floods and should be considered separately. Along the Atlantic and Gulf Coasts,
it is often desirable to segregate hurricane floods from nonhurricane events. Chapter 10

describes how to combine the separate frequency curves into one relation.
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c. nggpg Drffgrgnggs Where data recorded at two different locations are to be

combined for construction of a single frequency curve, the data should be adjusted as

necessary to a single location, usually the location of the longer record. The differences in
drainage area, precipitation and, where appropriate, channel characteristics between the
two locations must be taken into account. When the stream-gage location is different
from the project location, the frequency curve can be constructed for the stream-gage
location and subsequently adjusted to the project location.

d. Estimating Missing Events. uccasxonaiiy a runoff record may be mterrup[ea by a

period of one or more years. If the 1nterruptnon is caused by destruction of the gaging
station hv a largn ﬂnnri’ failure to fill in the record for that flood would result in a hiased

a AV

data set and should be avoided. However, if the cause of the interruption is known to be
independent of flow magnitude, the record should be treated as a broken record as
discussed in Section 3-2b. In cases where no runoff records are available on the stream
concerned, it is usually best to estimate the frequency curve as a whole using regional
generalizations, discussed in Chapter 9, instead of attempting to estimate a complete series
of individual events. Where a longer or more complete record at a nearby station exists, 1t

can bc uacd [Lo) clu.cuu lIIC CIICLLIVC IGllslll Uf ll:\-UlU dl. a xus.auuu Uy :uuuauug ||cqucxl\.y
statistics (Section 3-7) or estimating missing events through correlation (Chapter 12).

e. Climatic Cycles. Some hydrologic records suggest regular cyclic variations in
precipitation and runoff potential, and many attempts have been made to demonstrate that
precipitation or streamflows evidence variations that are in phase with various cycles,
particularly the well established 11-year sunspot cycle. There is no doubt that
iong-duration cycies or irregular climatic changes are associated with general changes of
land masses and seas and with local changes in lakes and swamps. Also, large areas that

. . N .
wr net ara naw arid Aacarte and laraa tamnarata raginne
have been known to be fertile in the past are now arid deserts, and large temperate regions

have been covered with glaciers one or more times. Although the existence of climatic
changes is not questioned, their effect is ordinarily neglected, because the long-term
climatic changes have generally insignificant effect during the period concerned in water
development projections, and short-term climatic changes tend to be self-compensating.
For these reasons, and because of the difficulty in differentiating between stochastic
(random) and systematic changes the effect of natural cycles or trends during the analysis

P Pugny PRptpwy. | PPy [P P

pcnuu is usuauy neglected in h nyurologlc lrcquency' studies.

AT VS

f. Effect of Rasin Develonment on Freauencv Relations,

(1) Hydrologic frequency estimates are often used for some purpose relating to
planning, design or operation of water resources control measures (structural and
nonstructural). The anticipated effects of these measures in changing the rate and volume
of flow is assessed by comparing the without project frequency curve with the
corresponding with project frequency curve Also, projects that have existed in the past

have affected the rates and volumes of flows, and the recorded values must be adjusted to
reflect uniform conditions in order that the frequency analysis will conform to the basic
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assumption of homogeneity. In order to meet the assumptions associated with analytical
frequency analysis techniques, the flows must be essentially unregulated by manmade

storage or dwersnon structures Consequently, wherever practicable, recorded runoff
values should be adjusted to natural (unimpaired) conditions before an analytical
frequency analysis is made. In cases where the impairment results from a multitude of
relatively small improvements that have not changed appreciably during the period of
record, it is possible that analytical frequency analysis techniques can be applied. The
adjustment to natural conditions may be unnecessary and, because of the amount of work

-nnnlna’l not cost allantioa

AIVVIVOLW, HIUL VDL cucbuvc

(2) One approach to determining a frequency curve of regulated or modified
runoff consists of routing all of the observed flood events under conditions of proposed or
anticipated development. Then a relationship is developed between the modified and the
natural flows, deriving an average or dependable relationship. A frequency curve of
modified flows is derived from this relationship and the frequency curve of natural flows.
In order to determine frequencies of runoff for extreme floods, routings of multiples of
the largest floods of record or multiples of a large hypothetical flood can be used.
Techniques of estimating project effects are outlined in Chapter 3-09d.

8. Annual Series Versus Partial Duration Series. There are two basic types of

frequency curves used to estimate flood damage. A curve of annual maximum events is
ordinarily used when the primary interest lies in the larger events or when the second
largest event in any year is of little concern in the analysis. The partial-duration curve
represents the frequency of all independent events of interest, regardless of whether two
or more occurred in the same year. This type of curve is sometimes used in economic
analysis, where there is considerable damage associated with the second largest and third
largest floods that occurred in some of the years. Caution must be exercised in selecting
events because they must be both hydrologically and economically independent. The
selected series type should be established early in the study in coordination with the
planner and/or economist. The time interval between flood events must be sufficient for
recovery from the earlier flood. Otherwise damage from the later flood would not be as
large as computed. When both the frequency curve of annual floods and the
partial-duration curve are used, care must be exercised to assure that the two are
consistent. A graphic demonstration of the relation between a chronologic record, an
annual-event curve and a partial-duration curve is shown on Figure 2-4

h. Presentation of Data and Results of Frequency Analysis. When frequency curves

are presented for technical review, adequate information should be included to permit an
independent review of the data, assumptions and analysis procedures. The text should
indicate clearly the scope of the studies and include a brief description of the procedure
used, including appropriate references. A summary of the basic data consisting of a
chronological tabulation of values used and indicating sources of data and any adjustments
should be included. The frequency data should also be presented in graphical form,
ordinarily on probability paper, along with the adopted frequency curves. Confidence
limit curves should also be included for analytically-derived frequency curves to illustrate
the relative value of the frequency relationships. A map of the gage locations and tables
of the adopted statistics should also be included.
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Chronological Sequence of Floods, 1959-1068
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Figure 2-4. Illustration of Chronologic Sequence and Arrayed Flood Peaks.
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2-4. Graphical Fr ncy Anal

a. imitations. Every set of frequency data should be plotted
graphically, even though the frequency curves are obtained analytically. It is important to
visually compare the observed data with the derived curve. The graphical method of
frequency-curve determination can be used for any type of frequency study, but
analytical methods have certain advantages when they are applicable. The principal
advantages of graphical methods are that they are generally applicable that the derived
curve can be easily vxauauzeu, and that the observed daia can be readily compared with
the computed results. However, graphical methods of frequency analysis are generally less
consistent than analytical methods as different individuals would draw different curves.
Also, graphical procedures do not provide means for evaluating the reiiability of the
estimates. Comparison of the adopted curve with plotted points is not an index of
reliability, but it is often erroneously assumed to be, thus implying a much greater
reliability than is actually attained. For these reasons, graphical methods should be
limited to those data types where analytical methods are known not to be generally
applicable. That is, where frequency curves are too irregular to compute analytically, for
example, stream or reservoir stages and regulated flows. Graphical procedures should
always be to visually check the analytical computations.

and Arrangemen k Flow . General principles in the selection
of frequency data are discussed in Section 2-3. Data used in the construction of
frequency curves of peak flow consist of the maximum instantaneous flow for each year
of record (for annual-event curve) or all of the independent events that exceed a selected
base value (for partial-duration curve). This base value must be smaller than any flood
flow that is of importance in the analysis, and should also be low enough so that the total
number of floods in excess of the base equals or exceeds the number of years of record.
Table 2-2 is a tabulation of the annual peak flow data with dates of occurrence, the data
arrayed in the order of magnitude, and the corresponding plotting positions.

c. Plotting Formulas. Median plotting positions are tabulated in Table F-1. In
ordinary hydrologic frequency work, N is taken as the number of years of record rather
than the number of events, so that percent chance exceedance can be thought of as the

number of events per hundred years. For arrays larger than 100, the plotting position, |
of the largest event is obtained by use of the following equation:

P, =100 (1 - (.5 (2-2a)

The plotting position for the smallest event (P,) is the complement (}-P 1) of this value,
and all the other plotting positions are interpol' ted linearly between these two. The
median plotting positions can be approximated by

P = 100(m -.3)/(N +.4) (2-2b)
where m is the order number of the event.

For partial-duration curves, particularly where there are more events than years (N),
plotting positions that indicate more than one event per year can also be obtained using
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Table 2-2. Annual Peaks, Sequential and Arrayed with Plotting Positions.

-PLOTTING POSITIONS-FISHKILL CREEK AT BEACON, N.Y.

RN AARANNANAANEARSARB AN N AR RN AN AR N ANN RO NN AR TR OR T RN PRI NN AN OO S

oo EVENTS ANALYZED...... . ORDERED EVENTS.......... hd
hd - WATER MEDIAN +
* MON DAY YEAR FLOW,CFS * RANK YEAR FLOW,CFS PLOT POS *
L e L L L L L e L e P e LD Ll Y ettt 2 L L4
hd 3 5 1845 2290 . 1 1955 8800 2.87 *
* 12 27 1945 1470 - 2 1956 8280 6.97 hd
* 3 15 1847 2220 - 3 1961 4340, 11.07 *
* 3 18 1948 2970 - 4 1968 3630. 15.16
hd 1 1 1948 3020 b 3 1853 3aae 19.26 «
* 3 g 1850 1210 - 6 1852 3170. 23.36 «
o 4 1 1851 2490 * 7 1962 3060. 27.46 >
* 3 12 1852 3170. o 8 1949 3020. 31.56 *
o 1 25 19853 3220. * 8 1948 2970. 35.66 *
* 9 13 1854 1760. * 10 1958 2500. 39.75 +
* 8 20 1855 8800. * 11 1851 24890, 43.85 *
* 10 16 1955 8280. * 12 1845 2280. 47.95 *
d 4 10 1857 1310. * 13 1947 2220. 52.05 *
* 12 21 1957 2500. d 14 1860 2140. 56.15 *
* 2 11 1958 1960. o 15 1858 1960. 60.25 *
* 4 6 1960 2140, * 16 1963 1780. 64.34 hd
* 2 26 1861 4340, hd 17 1854 1760. 68,44 -
* 3 13 1862 3060. hd 18 1867 1580. 72.54 hod
* 3 28 1863 1780. hd 19 1946 1470. 76.64 hd
* 1 26 1964 1380. * 20 1864 1380. 80.74 -
* 2 9 1865 980. * 21 1957 1310. 84 .84 -
* 2 15 1866 1040. * 22 1950 1210. 88.93 *
hd 3 30 1867 1580. hd 23 1966 1040. 93.03 *
* 3 19 1868 3630. hd 24 1865 980. 97.13 *

WREERAIARRERTARAAEAEBAATNAARARBRANAINIRAAANAEANIAAARAARRAA A RR RN AR

Output from HEC computer program HECWRC.

Equation 2-2b. This is simply an approximate method used in the absence of knowledge
of the total number of events in the complete set of which the partial-duration data
constitute a subset.

d. Plotting Grids. The plotting grid recommended for annual flood flow events is
the logarithmic normal grid developed by Allen Hazen (ref 13) and designed such that a
logarithmic normal frequency distribution will be represented by a straight line, Figure
2-5. The plotting grid used for stage frequencies is often the arithmetic normal grid. The
plotting grids may contain a horizontal scale of exceedance probability, exceedance
frequency, or percent chance exceedance. Percent chance exceedance (or nonexceedance)
is the recommended terminology.

e. Example Plotting of Annual-Event Frequency Curve. Figure 2-5 shows the

plotting of a frequency curve of the annual peak flows tabulated in Table 2-2. A smooth
curve should be drawn through the plotted points. Unless computed by analytical
frequency procedures, the frequency curve should be drawn as close to a straight line as
possible on the chosen probability graph paper. The data plotted on Figure 2-5 shows a
tendency to curve upward, therefore, a slightly curved line was drawn as a best fit line.

f. Example Plotting of Partial-Duration Curve. The partial-duration curve

corresponding to the partial-duration data in Table 2-3 is shown of Figure 2-6a. This
curve has been drawn through the plotted points, except that it was made to conform with
the annual-event curve in the upper portion of the curve. The annual-event curve was
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developed in accordance with the procedures described in Chapter 3. When
partial-duration data must include more events than there are years of record (see
Subparagraph b) it will be necessary to use logarithmic paper for plotting purposes, as on
Figure 2-6a, in order to plot exceedance frequencies greater than 100 percent. Otherwise,
the curve can be plotted on probability grid, as illustrated on Figure 2-6b.

2-5. Analytical Frequencv Analysis.

neral Pr ures an mmon Distributions. The fitting of data by an
analytical procedure consists of selecting a theoretical frequency distribution, estimating
the parameters of the distribution from the data by some fitting technique, and then
evaluating the distribution function at various points of interest. Some theoretical
distributions that have been used in hydrologic frequency analysis are the normal
(Gaussian), log normal, exponential, two-parameter gamma, three-parameter gamma,
Pearson type III, log-Pearson type 11, extreme value (Gumbel) and log Gumbel. Chapter
3 describes the fitting of the log-Pearson type III to annual flood peaks and Appendix C
describes fitting the extreme value (Gumbel) distribution.

Fishkill Creek at Besacon, NY 1845-1968

104
B o ©
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Figure 2-5. Example of Graphical Frequency Analysis
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Table 2-3. Partial Duration Peaks, Arrayed with Plotting Positions.
FISBKILL CREEK AT BEACON, NY -- PEAKS ABOVE 1500 CFS
LA 22 412422222222 2222222232223 22222223 (2222022222222 2222424222222 222273
L TR ORDERED EVENTS.......... . LT ORDERED EVENTS.......... 4
. WATER MEDIAN = . WATER MEDIAN *
* RANK YEAR FLOW,CFS PLOT POS * * PRANK YEAR FLOW,CFS PLOT POS *
W oam o e - - * W o e o e e e - —————— - ———— *
» 1 1955 8800 2.87 =+ * 26 1952 1820. 105.33 =
» 2 1956 8280 6.97 * 27 1945 1780.  109.43 *
- 3 1961 4340 11.07 =+ *» 28 1963 1780.  113.52 =+
» 4 1968 3630 15.16 * » 29 1956 1770,  117.62 *
» 5 1953 3220 19.26 * * 30 1954 1760. 121.72 *
* 6 1952 3170.  23.36 * 31 1952 1730,  125.82 *
. 7 1962 3060 27.46 ¥ * 32 1968 1720. 120.92 ~+
» 8 1949 3020.  31.56 * * 33 1955 1660.  134.02 *
» 9 1948 2970 35.66 = * 34 1958 1650, 138.11 *
* 10 1948 2750 39.75 + * 35 19%8 1650, 142.21 *
* 11 1949 2700 43.85 = » 3 1953 1630.  146.31 *
* 12 1958 2500 47.95 # = 37 1960 1610,  150.41 *
* 13 1951 2490 52.05 * »~ 38 10956 1600,  154.51 *
* 14 1952 2460 56.15 * » 39 19%8 1580. 158.61 *
* 15 1945 2290 §0.25 w * 40 1958 1580.  162.70 *
A 16 1953 2290 b& .34 * * 41 1867 1580 166.80 *
* 17 1958 2290 68.44 w * 42 1951 1560. 170.90 *
* 18 1953 2280 72.54 * = 43 1859 1560. 175.00 *
* 19 1948 2220 76.64 * * 4k 1955 1550. 179.10 *
* 20 1951 2210 80.74 * * 45 1951 1540,  183.20 *
» 21 1960 2140 84.84 w * 46 1968 1530.  187.30 *
* 22 1953 2080 88.93 * * 47 1960 1520. 191.39 =
* 23 1959 1960 93.03 * 48 1958 1520.  195.49 *
* 24 1959 1920 97.13 « * 49 1052 1520. 199.58  *
+ 25 1958 1900. 101.23 * * 50 1948 1510. 203.69  *
» . = 51 1963 1510. 207.79 =
A 2242 a2 2222222222222ty llld ARARBAARRAAARTNRNAAAAAAARRTEN AN AART RN
b. Advantages. Determining the frequency distribution of data by the use of

analytical techniques has several advantages. The use of an established procedure for
fitting a selected distribution would result in consistent frequency estimates from the same
data set by different persons. Error distributions have been developed for some of the
theoretical distributions that enable computing the degree of reliability of the frequency
estimates (see Chapter 8). Another advantage is that it is possible to regionalize the
parameter estimates which allows making frequency estimates at ungaged locations (see
Chapter 9).

c. Disadvantages. The theoretical fitting of some data can result in very poor
frequency estimates. For example, stage-frequency curves of annual maximum stages are
shaped by the channel and valley characteristics, backwater conditions, etc. Another
example is the flow-frequency curve below a reservoir. The shape of this frequency
curve would depend not only on the inflow but the capacities, operation criteria, etc.
Therefore, graphical techniques must be used where analytical techniques provide poor
frequency estimates.
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Figure 2-6a. Partial Duration Frequency Curve, Log-Log Paper
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Figure 2-6b. Partial Duration Frequency Curve, Probability Paper.
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CHAPTER 3
FLOOD FREQUENCY ANALYSIS

3-1. Intr ion.

The procedures that federal agencies are to follow when computing a frequency
curve of annual flood peaks have been published in Guidelines for Determining Flood
Flow Frequency, Bulletin 17B (46). As stated in Bulletin 17B, "Flood events ... do not fit
any one specific known statistical distribution." Therefore, it must be recognized that
occasionally, the recommended techniques may not provide a reasonable fit to the data.
When it is necessary to use a procedure that departs from Bulletin 17B, the procedure
should be fundamentally sound and the steps of the procedure documented in the report
along with the frequency curves.

This report contains most aspects of Bulletin 17B, but in an abbreviated form.

YVacintic aemantc i ; i i
Various aspects of the procedures are described in an attempt to clarify the computational

steps. The intent herein is to provide guidance for use with Bulletin 17B. The step by
step procedures to compute a flood peak frequency curve are contained in Appendix 12 of
Bulletin 17B and are not repeated herein. ’

rson T II Distribution.

a. General. The analytical frequency procedure recommended for annual maximum
streamflows is the logarithmic Pearson type III distribution. This distribution requires
three parameters for complete mathematical specification. The parameters are: the mean,
or first moment, (estimated by the sample mean, X); the variance, or second moment,
(estimated by the sample variance, S): the skew, or third moment, (estimated by the
sample skew, G). Since the distribution is a logarithmic distribution, all parameters are
estimated from logarithms of the observations, rather than from the observations
themselves. The Pearson type III distribution is particularly useful for hydrologic
investigations because the third parameter, the skew, permits the fitting of non-normal
samples to the distribution. When the skew is zero the log-Pearson type III distribution
becomes a two-parameter distribution that is identical to the logarithmic normal (often
called log-normal) distribution.

b. Fitting the Distribution.

(1) The log-Pearson type III distribution is fitted to a data set by calculating the
sample mean, variance, and skew from the following equations:

X & — (3-1)

(3-2a)
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IX?- (TX¥N
=2 (3'2b)
N-1
N x%) N(T (X-X)%)
G = - (3-3a)
(N-1)(N-2)s3 (N-1)(N-2)83
NA(E X3) - 3N(T XX X?) + 2T X)?
- (3-3b)
N(N-1)(N-2)s3
in which:

X = mean logarithm

X = logarithm of the magnitude of the annual event
N = number of events in the data set

S = unbiased estimate of the variance of logarithms

x = X-X, the deviation of the logarithm of a single event from the mean
logarithm

G = unbiased estimate of the skew coefficient of logarithms

The precision of the computed values is more sensitive to the number of significant digits
when Equations 3-2b and 3-3b are used.

(2) In terms of the frequency curve itself, the mean represents the general
magnitude or average ordinate of the curve, the square root of the variance (the standard
deviation, S) represents the slope of the curve, and the skew represents the degree of
curvature. Computation of the unadjusted frequency curve is accomplished by computing
values for the logarithms of the streamflow corresponding to selected values of percent
chance exceedance. A reasonable set of values and the results are shown in Table 3-1.
The number of values needed to define the curve depends on the degree of curvature (i.e.,
the skew). For a skew value of zero, only two points would be needed, while for larger
skew values all of the values in the table would ordinarily be needed.

(3) The logarithms of the event magnitudes corresponding to each of the selected
percent chance exceedance values are computed by the following equation:

logQ = X +KS (3-4)

where X and S are defined as in Equations 3-1 and 3-2 and where
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log Q = logarithm of the flow (or other variable) corresponding to a specified value
of percent chance exceedance

K = Pearson type IIl deviate that is a function of the percent chance exceedance
and the skew coefficient.

c. Example Computation.

(1) As shown in the following example, Equation 3-4 is solved by using the
computed values of X and S and obtaining from Appendix V-3 the value of K
corresponding to the adopted skew, G, and the selected percent chance exceedance (P).
An example computation for P=1.0, where X, S and G are taken from Table 3-1, is:

log Q = 3.3684 + 2.8236 (.2456)
= 4.0619
Q = 11500 cfs

(2) It has been shown (36) that a frequency curve computed in this manner is biased
in relation to average future expectation because of uncertainty as to the true mean and
standard deviation. The effect of this bias for the normal distribution can be eliminated
by an adjustment termed the expected probability adjustment that accounts for the actual
sample size. This adjustment is discussed in more detail in Section 3-4. Table 3-1 and
Figure 3-1 shows the derived frequency curve along with the expected probability
adjusted curves and the 5 and 95 percent confidence limit curves.

Table 3- T rve an isti

-FREQUENCY CURVE- 01-3735 FISHKILL CREEX AT BEACON, NEW YORK

WRAARNARNNARANA AR AR EARRARRERNARTN RN EAAARAANAARRNN AR AN A PR drdr R wrd

" FLOW,CFS........ * PERCENT #.. CONFIDENCE LIMITS....*
- EXPECTED * CHANCE *
* COMPUTED PROBABILITY * EXCEEDANCE * 0.05 LIMIT 0.95 LIMIT *
W om o e o - W mmm—wn-o-—-- Nema—- - -
*  19200. 28300, * 0.2 39100. 12300, *
* 14500, 18000, * 0.5 = 26900. 9740, *
*  11500. 14100, 1.0 w 20100. 8080, *
» 9110. 10500, 2.0 14800, 6640, *
» 7100. 7820, 40 * 10800. 5380, *
» 4960, 5216. =+ 10.0 * 6850. 3950,
- 3650. 3740, <+ 20,0 * 4710. 2990, *
» 2190. 2190, * s0.0 2650. 1780.
- 1440. 1420. ~  80.0 1760. 1110, *
» 1200. 1170. * 90,0 * 1490, 884, ¥
- 1040. 1010, * 95.0 1320. 746, *
- 841, 791, * 99,0 * 1100, 568, *
A e o e s o b e e e o a m e o S e e
*  FREQUENCY CURVE STATISTICS STATISTICS BASED ON *
w T e e e e *
* MEAN LOGARITHM 3.368¢ * HISTORIC EVENIS 0
» STANDARD DEVIATION  0.2456 * HIGH OUTLIERS 0 »
* COMPUTED SKEW 0.7300 * LOW OUTLIERS 0 *
* GENERALIZED SKEW 0.6000 * ZERO OR MISSING 0 »
* ADOPTED SKEW 0.7000 * SYSTEMATIC EVENTS 24w

BERNEEARNTERRTETNAARTARRARINRRARINNARANSREANRTAAA PR RTR RN TR Aw
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Figure 3-1. Annual Frequency Curve.
d. Broken Record. A broken record results when one or more years of annual peaks

are missing for any reason not related to the flood magnitude. In other words, the missing
events were caused by a random occurrence. The gage may have been temporarily
discontinued for budgetary or other reasons. The different segments of the record are
added together and analyzed as one record, unless the different parts of the record are
considered non-homogeneous. If a portion of the record is missing because the gage was
destroyed by a flood or the flood was too low to record, then the observed events should
be analyzed as an incomplete record.

e. Incomplete Record. An incomplete record can result when some of the peak flow
events were either too high or too low. Different analysis procedures are recommended
for missing high events and for missing low events. Missing high events may result from
the gage being out of operation or the stage exceeding the rating table. In these cases,
every effort should be made to obtain an estimate of the missing events. Missing low
floods usually result when the flood height is below the minimum reporting level or the
bottom of a crest stage gage. In these cases, the record should be analyzed using the
conditional probability adjustment described in Appendix 5 of Bulletin 17B and Section
3-6 of this report.
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the entire year. A zero flood peak precludes the normal statistical analysis because the
logarithm of zero is minus infinity. In this case the record should be analyzed using the
conditional probability adjustment described in Appendix 5 of Bulletin 17B and Section
3-6 of this report.

1) Guidance. The Bulletin 17B (46) defines outliers as "data points which depart

m the trend of the remainine data” The sequence of steps for testing for
3 L3 bl Wil WA ‘IIU AN AB86R4843 lb Awiw Wi P Vi ‘Uh’“l.a 1Vl

’ Oll av
high and low outliers is dependent upon the skew coeffxcxent and the treatment of high
outliers differs from that of low outliers. When the computed (station) skew coefficient is
greater than +0.4, the high-outlier test is applied first and the adjustment for any high
outliers and/or historic information is made before testing for low outliers. When the
skew coefficient is less than -0.4, the low-outlier test is applied first and the adjustment
for any low outlier(s) ns made before testing for hxgh outliers and adjustmg for any
historic information. When the skew coefficient is between -0.4 and +0. 4, botih the uig i~
and low-outlier tests are made to the systematic record (minus any zero flood events)
before anv adiustments are made

Seils 222 ..._J..-~. en S dalasise.

(2) Eguation. The following equation is used to screen for outliers:

"
»

+ K8 (3-5)

where:

Lel
0

outlier threshold in log units

X
"

mean logarithm (may have been adjusted for high or low outliers, and/or
historical information depending on skew coefficient)

S = standard deviation (may be adjusted value)

Ky = K value from Appendix 4 of Bulletin 17B or Appendix F, Table 11 of this
report. Use plus value for high-outlier threshold and minus value for
low-outlier threshold

N = Sampie size (may be historic period (H) if historically adjusted statistics are
used)

-

(‘n High Qutliers. Flood peaks that are abg.p he 1 upper thr gs__gl_d are treated as high
utliers are weighted by
the historical adjustment equations. Therefore, for any flood peak(s) to be weighted as
high outlier(s), either historical information must be available or the probable occurrence
of the event(s) estimated based on flood information at nearby sites. If it is not possible
to obtain any information that weights the high outlier(s) over a longer period than that of
the systematic record, then the outlier(s) should be retained as part of the systematic
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(4) Low Outliers. Flood peaks that are below the low threshold value are treated as
low outliers. Low outliers are deleted from the record and the frequency curve computed
by the conditional probability adjustment (Section 3-6). If there are one or more values
very near, but above the threshold value, it may be desirable to test the sensitivity of the
results by considering the value(s) as low outlier(s).

h. Historic Events and Historical Information.

(1) Definitions. Historic events are large flood peaks that occurred outside of the
systematic record. Historical information is knowledge that some flood peak, either
systematic or historic, was the largest event over a period longer than that of the
systematic record. It is historical information that allows a high outlier to be weighted
over a longer period than that of the systematic record.

(2) Egquations. The adjustment equations are applied to historic events and high
outliers at the same time. It is important that the lowest historic peak be a fairly large
peak, because every peak in the systematic record that is equal to or larger than the lowest
historic peak must be treated as a high outlier. Also a basic assumption in the adjusting
equations is that no peaks higher than the lowest historic event or high outlier occurred
during the unobserved part of the historical period. Appendix D in this manual is a
reprint of Appendix 6 from Bulletin 17B and contains the equations for adjusting for
historic events and/or historical information.

3-3. Weighted Skew Coefficient.

a. Genera]. It can be demonstrated, either through the theory of sampling
distributions or by sampling experiments, that the skew coefficient computed from a small
sample is highly unreliable. That is, the skew coefficient computed from a small sample
may depart significantly from the true skew coefficient of the population from which the
sample was drawn. Consequently, the skew coefficient must be compared with other
representative data. A more reliable estimate of the skew coefficient of annual flood
peaks can be obtained by studying the skew characteristics of all available streamflow
records in a fairly large region and weighting the computed skew coefficient with a
generalized skew coefficient. (Chapter 9 provides guidelines for determining generalized
skew coefficients.)

b. Weighting Equation. Bulletin 17B recommends the following weighting equation:

MSE(G) + MSE(G)

G, = (3-6)
MSE; + MSE
where:
G, = weighted skew coefficient
G = computed (station) skew
G = generalized skew
MSE; = mean-square error of generalized skew
MSE. = mean-square error of computed (station) skew

3-6
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¢. Mean Square Error.

(1) The mean-square error of the computed skew coefficient for log-Pearson type

Puted

Il random variables has been obtained by sampling experiments. Equation 6 in Bulletin
17B provides an approximate value for the mean-square error of the computed (station)
skew coefficient:

MSEG -~ ]0(A'B[l0910(N/10)]) (3-7a)

= ]0**B/NB (3-7b)

A = -0.33 +0.08 |G|if |G| < 0.90
-0.52 + 0.30 |Gl if |G| > 0.90

]

B = 0.94-0.26|G|if |Gl < .50
= 0.55 if |G} > 1.50
where:
IGi = absolute value of the computed skew
N = record length in years

Appendix F-10 provides a table of mean-square error for several record lengths and skew
coefficients based on Equation 3-7a.

(2) The mean-square error (MSE) for the generalized skew will be dependent on the
accuracy of the method used to develop generalized skew relations. For an isoline map,
the MSE would be the average of the squared differences between the computed (station)
skew coefficients and the isoline values. For a prediction equation, the square of the
standard error of estimate would approximate the MSE. And, if an arithmetic mean of
the stations in a region were adopted, the square of the standard deviation (variance)
would approximate the MSE.

3-4. Expected Probability.

a. The computation of a frequency curve by the use of the sample statistics, as an
estimate of the distribution parameters, provides an estimate of the true frequency curve.
(Chapter 8 discusses the reliability and the distribution of the computed statistics.) The
fact of not knowing the location of the true frequency curve is termed uncertainty. For
the normal distribution, the sampling errors for the mean are defined by the t distribution
and the sampling errors for the variance are defined by the chi-squared distribution.
These two error distributions are combined in the formation of the non-central t
distribution. The non-central t-distribution can be used to construct curves that, with a
specified confidence (probability), encompass the true frequency curve. Figure 3-2 shows

3-7
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the confidence limit curves around a frequency curve that has the following assumed
statistics: N=10, X=0., S=1.0. :

b. If one wished to design a flood protection work that would be exceeded, on the
average, only one time every 100 years (one percent chance exceedance), the usual design
would be based on the normal standard deviate of 2.326. Notice that there is a 0.5 percent
chance that this design level may come from a "true" curve that would average 22
exceedances per 100 years. On the other side of the curve, instead of the expected one
exceedance, there is a 99.5 percent chance that the "true” curve would indicate 0.004
exceedances. Note the large number of exceedances possible on the left side of the curve.
This relationship is highly skewed towards the large exceedances because the bound on the
right side is zero exceedance. A graph of the number of possible "true" exceedances
versus the probability that the true curve exceeds this value, Figure 3-3, provides a curve
with an area equal to the average (expected) number of exceedances.

c. The design of many projects with a target of 1 exceedance per 100 years at each
project and assuming N=10 for each project, would actually result in an average of 2.69
exceedances (see Appern .ix F-8).

NORMAL DISTRIBUTION, SAMPLE SIZE=10

ERROR LIMIT EXCEEDANCE SROS.
.005 .01 .025 .05 .10

] / /.25

s .50

.75

.90

ERROR L1MIT EXCEEDANCE PROS.

.950
.975

.990
.995

STANDARD DEVIATE

- /

] ///V

99.99 99.9 99 90 50 10 1 .1 .01
PERCENT CHANCE EXCEEDANCE

Figure 3-2. Confidence Limit Curves based on the Non-central t Distribution.
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PROBABILITY OF EXCEEDING
Figure 3-3. Cumulative Probability Distribution of Exceedances per 100 Years.

d. There are two methods that can be used to correct (expected probability
adjustment) for this bias. The first method, as described above, entails plotting the curve
at the "expected” number of exceedances rather that at the target value, drawing the new
curve and then reading the adjusted design level. Appendix F-8 provides the percentages
for the expected probability adjustment.

¢. The second method is more direct because an adjusted deviate (K value) is used in
Equation 3-4 that makes the expected probability adjustment for a given percent chance
exceedance. Appendix F-7 contains the deviates for the expected probability adjustment.
These values may be derived from the t-distribution by the following equation:

Ky = tplN.1[(N+l)/N]"" (3-8)
where:

P = exceedance probability (percent chance exceedance divided by 100)

N = sample size

K = expected probability adjusted deviate

Student’s t-statistic from one-tailed distribution

-~
L]
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f. For a sample size of 10 and a 1% percent chance exceedance, the expected
probability adjusted deviate is 2.959 as compared to the value of 2.326 used to derive the
computed frequency curve.

g. As mentioned in the first paragraph, the non-central t distribution, and
consequently the expected probability adjustment, is based on the normal distribution.
The expected probability adjustment values in Appendices F-7 and F-8 are considered
applicable to Pearson type III distributions with small skew coefficients. The phrase
"small skew coefficients” is usually interpreted as being between -0.5 to +0.5. Note also
that the uncertainty in the skew coefficient is not considered. In other words, the skew
coefficient is treated as if it were the population skew coefficient.

h. The expected probability adjustment can be applied to frequency curves derived
by other than analytical procedures if the equivalent worth (in years) of the procedure can
be computed or estimated.

3-5. Risk.

a. Definition. The term risk is usually defined as the possibility of suffering loss or
injury. In a hydrologic context, risk is defined as "the probability that one or more events
will exceed a given flood magnitude within a specified period of years"” (46). Note that
this narrower definition includes a time specification and assumes that the annual
exceedance frequency is exactly known. Uncertainty is pot taken into account in this
definition of risk. Risk then enables a probabilistic statement to be made about the
chances of a particular location being flooded when it is occupied for a specified number
of consecutive years. The percent chance of the location being flooded in any given year
is assumed to be known.

b. Binomial Distribution. The computation of risk is accomplished by the equation
for the binomial distribution:

N!

= Tnenr PA-PY (3-9)

R

where:
R, = risk (probability) of experiencing exactly I flood events
N = number of years (trials)
I = number of flood events (successes)

P = exceedance probability, percent chance exceedance divided by 100, of the
annual event (probability of success)

(The terms in parentheses are those usually used in statistical texts)

When I equals zero (no floods), Equation 3-9 reduces to:



EM 1110-2-1415

y

5 Mar §3

= (1-pW (1-102)
Ry (1-P) (3-102)

and the probability of experiencing one or more floods is easily computed by taking the
complement of the probability of no floods:

N
= 1-(1-P) (3-10b)

R
*¥(1 or more)

c. Application.

(1) Risk is an important concept to convey to those who are or will be protected by
flood control works. The knowledge of risk alerts those occupying the flood plain to the
fact that even with the protection works, there could be a significant probability of being
flooded during their lifetime. As an example, if one were to build a new house with the
ground floor at the 1% chance flood level, there is a fair (about one in four) chance that
the house will be flooded before the payments are completed, over the 30-year mortgage

life. Using Equation 3-10b:

= 1_11
I1={I=-

1-.9930

N’

R
(1 or more)

1-.74

.26 or 26% chance

(2) Appendix F-12 provides a table for risk as a function of percent chance
exceedance penod length and number of exceedances. This table could also be used to
check the validity of a derived frequency curve. As an example, if a frequency curve is
determined such that 3 observed events have exceeded the derived 1% chance exceedance
level during the 50 years of record, then there would be reason to quesnon the derived
frequency curve. From Appendix F-12, the probability of this occurring is 0.0122 or
about 1%. It is possible for the situation to occur, but the probability of occurring is very
low. This computation just raises questions about the validity of the derived curve and

indicates that other vahdatxon checks may be warranted before adopting the derived
curve,

Qg g';'g gbability Agigsz ment. The conditional probability adjustment is made

wheﬁ flood pe axs /e either been e d or are not availabie below a specified

hav d iete
truncatxo level. This adjustment will be applied when there are zero flood years, an
incomplete record or low outliers. As stated in Appendix 5 of Rulletin 17B, this

incomplete record or outliers. As stated in Appendix § of Bulletin this

procedure is not appropriate when 25 percent or more of the events are truncated. The
computation steps in the conditional probability adjustment are as follows:

1. Compute the estimated probability (f") that an annual peak will exceed the
truncation ievei:

P = N/n (3-11a)
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where N is the number of peaks above the truncation level and n is the total number
of years of record. If the statistics reflect the adjustments for historic information,
then the appropriate equation is

H - WL
—_— (3-11b)

ol
]

H

where H is the length of historic period, W is the systematic record weight and L is
the number of peaks truncated.

2. The computed frequency curve is actually a conditional frequency curve. Given
that the flow exceeds the truncation level, the exceedance frequency for that flow
can be estimated. The conditional exceedance frequencies are converted to annual
frequencies by the probability computed in Step 1..

P=Fp, (3-12)
where P is the annual percent chance exceedance and P is the conditional percent

chance exceedance.

3. Interpolate either graphically or mathematically to obtain the discharge values
(Qp) for 1, 10 and 50 percent chance exceedances.

4. Estimate log-Pearson type III statistics that will fit the upper portion of the
adjusted curve with the following equations:

log (Q4/Q4¢)
G, = -250+3.12 —— (3-13)
log (Q,0/Qsq)
log (Q,/Qsq)
s, = — TV (3-14)
K1 - Kso
X, = log (Qsp) - Kgp S, (3-15)

where G, S, and X. are the synthetic skew coefficient, standard deviation and
mean respecnvely, é and Qg the discharges determined in Step 3; and K, and

are the Pearson Type PII devnates for percent change exceedances of 1 and g
anc? skew coefficient G,
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5. Combine the synthetic skew coefficient with the generalized skew by use of
Equation 3-6 to obtain the weighted skew.

6. Develop the computed frequency curve with the synthetic statistics and compare
it with the plotted observed flood peaks.

3-7. Two-Station Comparison.
a. Purpose.

(1) In most cases of frequency studies of runoff or precipitation there are locations
in the region where records have been obtained over a long period. The additional period
of record at such a nearby station is useful for extending the record at a short record
station provided there is reasonable correlation between recorded values at the two
locations.

(2) It is possible, by regression or other techniques, to estimate from concurrent
records at nearby locations the magnitude of individual missing events at a station.
However, the use of regression analysis produces estimates with a smaller variance than
that exhibited by recorded data. While this may not be a serious problem if only one or
two events must be estimated to "fill in” or complete an otherwise unbroken record of
several years, it can be a significant problem if it becomes necessary to estimate more than
a few events. Consequently, in frequency studies, missing events should not be freely
estimated by regression analysis.

(3) The procedure for adjusting the statistics at a short-record station involves three
steps: (1) computing the degree of correlation between the two stations, (2) using the
computed degree of correlation and the statistics of the longer record station to compute
an adjusted set of statistics for the shorter-record station, and (3) computing an equivalent
"length of record” that approximately reflects the "worth" of the adjusted statistics of the
short-record station. The longer record station selected for the adjustment procedure
should be in a hydrologically similar area and, if possible, have a drainage area size
similar to that of the short-record station.

b. Computation of Egrrgla;ion. The degree of correlation is reflected in the
correlation coefficient R as computed through use of the following equation:

[IXY - (IXTY)/NP

R? = (3-16)

[£X2 - (3X)¥/N] [TY? - (TY)¥/N]

where:
R2 = the determination coefficient
Y = the value at the short-record station
= the concurrent value at the long-record station

N = the number of years of concurrent record
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For most studies involving streamflow values, it is appropriate to use the logarithms of the
values in the equations in this section.

c. Adjustment of Mean. The following equation is used to adjust the mean of a
short-record station on the basis of a nearby longer-record station:

Y = Y, +(X5- X RS, /5y) (3-17)

where:

~<|
"

the adjusted mean at the short-record station

= the mean for the concurrent record at the short-record station

=<

the mean for the complete record at the longer-record station

Xl Xl
w
]

-l

= the mean for the concurrent record at the longer-record station
R = the correlation coefficient

Sv., = the standard deviation for the concurrent record at the short-record station
= the standard deviation for the concurrent record at the longer-record

SX
1 .
station

All of the above parameters may be derived from the logarithms of the data where
appropriate, e.g., for annual flood peaks. The criterion for determining if the variance of
the adjusted mean will likely be less than the variance of the concurrent record is:

R? > 1/(N, - 2) (3-18)

where N, equals the number of years of concurrent record. If R? is less than the
criterion, Equation 3-17 should not be applied. In this case just use the computed mean at
the short-record station or check another nearby long-record station. See Appendix 7 of
Bulletin 17B for procedures to compare the variance of the adjusted mean against the
variance of the entire short-record period.

d. Adijustment of Standard Deviation. The following equation can be used to adjust

the standard deviation:

¢ = S +(82- 82) R%S,2/8,2) (3-19)

{approximate)
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where:
S, = the adjusted standard deviation at the short-record station

S, = the standard deviation for the period of concurrent record at the short-record
station

S, = the standard deviation for the complete record at the base station

S, = the standard deviation for the period of concurrent record at the base station

R? = the determination coefficient

All of the above parameters may be derived from the logarithms of the data where
appropriate, e.g., for annual flood peaks. This equation [‘JfO‘v‘iue‘:S approximate results
compared to Equation 3-19 in Appendix 7 of Bulletin 17B, but in most cases the

difference in the results does not justify the additional computations.

e. Adjustment of Skew coefficient. There is no equation to a_djust the skew

coefficient that is comparable to the above equations. When adjusting the statistics of
annual flood peaks either a weighted or a generalized skew coefficient may be used
depending on the record length.

f. Equivalent Record Length. The final step in adjusting the statistics is the
computation of the "equivalent record length” which is defined as the period of time
which would be required to establish unadjusted statistics that are as reliable (in a
statistical sense) as the adjusted values. Thus, the equivalent length of record is an
indirect indication of the reliability of the adjusted values of Y and Sy. The equivalent
record length for the adjusted mean is computed from the following equatlon

NY
N, = 1 (3-20)

I - [(Ny - Ny )/N [R? - (1 - R3/(Ny, - 3)]

where
N, = the equivalent length of record of the mean at the short-record station
Nv1 = the number of years of concurrent record at the two stations
N, = the number of years of record at the longer-record station

R = the adjusted correlation coefficient

Figure 3-4 shows the data and computations for a two-station comparison for a short
record station with 21 events and a long record station with 60 systematic events. It can
be seen that the adjustment of the frequency statistics provides an increased reliability in
the mean equivalent to having an additional 17 years of record at the short-record station.

3-15



EM 1110-2-1415

5 Mar 93
TATISTICS OF DATA

Yeor Flow Long Record Short

Record

Chattoogas Talluleh Not
River River Total Concurrent Concurrent

1915 12600 Systematic Events 60 21 39 21
1917 14000
1918 5900 Mistoric Period 7" [+] ] 0
1919 16000
1920 8200 Log Mesn 3.8866 3.9310 3.84650 3.4796
1921 4100
1922 6200 Standard Deviation [0.2322 0.2678 0.2140 0.2609
1923 5300
1924 9200 Computed 0.5075 0.1588 0.7340 -0.0811
1925 3900 Skew Generalized - - - -
1926 6200 Adopted - - - -0.1000
1927 3600
1928 20100
1929 11400 COMPUTATIONS FOR TWO-STATION COMPARISON:
1940 29000°*
1941 7530 Slope: b = 0.790495
1942 6870 Correlation Coefficient: R =0.811351 (See figure 9-01)
1943 6870
1944 3840 From equations 19, 21, and 22:
1945 2930
1946 6650 Yy = 3.4796 » 0.790495 (3.8866 +« 3.9310)
1947 6440
1948 12400 Yy = 3.4445
1949 13900 2 2 2 2
1950 4740 S'z = [(0.2322)° - (0.2678)°1(0.81146)°(0.2609/0.2678)
1951 5220 2
1952 13400 * (0.2609)
1953 4020 SY = 0.2386
1954 6230
1955 5820 21
1956 5820 Yy T T o eses - Lo0.any; %8
1957 5820 —rr— (0 3 B
1958 5620
B4 €=0.0 MSE; =0.302 G=-0.0811 MSE; = 0.142
ey D (0.302)(-0.0811) + (0.0142)(0.0)
s 0 Oy = 5.307 + 0.142
1963 5420 ° )
1964 9880
1965 27200 7440 Gy = -0.055 = -0.1
1966 13400 5140
1967 15400 2800
1968 5620 3100 FREQUENCY CURVE, TALLULAN RIVER NEAR CLAYTOMN, GA
1969 14700 2470
1970 3480 2010 esaeeosFLOW,CFS........ PERCENT ..CONFIDENCE LIMITS..
97 3290 976 EXPECTED CHANCE
1972 T440 2160 COMPUTED PROBABILITY EXCEEDANCE .05 LIMIT .95 LIMIT
1973 19600 3500
1974 6400 4660 12700 14200 .2 18800 9580
1975 6340 2610 10900 11900 .5 15600 8410
1976 18500 6530 9590 10300 1.0 13400 7540
1977 13000 3580 8350 8800 2.0 11300 6680
1978 7850 4090 6760 6990 5.0 8810 5550
1979 14800 6240 5590 5710 10.0 7040 4680
1980 10900 2880 4430 4480 20.0 5370 3780
1981 4120 1600 2810 2810 50.0 3260 2420
1982 5000 1960 1760 1740 80.0 2060 1450
1983 7910 3260 1370 1340 90.0 1640 1080
1984 4810 2000 1110 1070 95.0 1360 847
1985 4740 1010 745 636 99.0 957 524

* Historic information, pesk largest since 1915,

Figure 3-4. Two-Station Comparison Computations.
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(Figure 9-1 shows the computations for b and R and Figure 9-2 shows the Tallulah River
annual peaks plotted against the Chattooga River peaks.) Figure 3-5 shows the resulting
unadjusted and adjusted frequency curves based on the computed and adjusted statistics
in Flgure 3-4. Although N_ is actually the equwalent years of record for the mean, the
value is used as an estimate equivalent record length in the computation of conf:dence
limits and the expected probability adjustment.

§ummgry of Steps. The procedure for computing and adjusting frequency
staustlcs using a longer-record station can be summarized as follows:

(1) Arrange the streamflow data by pairs in order of chronological sequence.
(2) Compute ?1 and S‘r1 for the entire record at the short-record station.
(3) Compute X and Sy for the entire record at the longer-record station.

(4) Compute X and S, for the pornon of the longer-record station which is
concurrent with the shox’t record station.

(5) Compute the correlation coefficient using Equation 3-16.

(6) Compute Y and Sy for the short-record station using Equations 3-17 and 3-18.

105 Tallulah River near Cl-uton, QA
H - --- Expected Probability Curve from Data
| | —we—— Expected Probability Curve from Two-Station Comparison
o 4 1- “
G 10
- =
3 ol
] —1<
T L
X
[}
]
a o
-4
3
3
c
£ 10
<
102
99.99 99.9 99 90 50 ie 1 P .91

Percant Chance Excaesdsnce

Figure 3-5. Observed and Two-Station Comparison Frequency Curves.
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(7) Calculate the equivalent length of record of the mean for the short-record station
using Equation 3-20.

(8) Compute the frequency curve using adjusted values of Y and S in Equation 3-4
and K values from Appendix F-2 corresponding to the adopted skew coefficient.

(9) Compute the expected probability adjustment and the confidence limits.

3-8. Flood Volumes.

a. Nature and Purpose. Flood volume frequency studies involve frequency analysis
of maximum runoff within each of a set of specified durations. Flood volume-duration
data normally obtained from the USGS WATSTORE files consists of data for 1, 3, 7, 15,
30, 60, 90, 120, and 183 days. These same values are the default values in the HEC
computer program STATS (Table 3-2). Runoff volumes are expressed as average flows in
order that peak flows and volumes can be readily compared and coordinated. Whenever it
is necessary to consider flows separately for a portion of the water year such as the rain
season or snowmelt season, the same durations (up to the 30-day or 90-day values) are
selected from flows during that season only. Flood volume-~duration curves are used
primarily for reservoir design and operation studies, and should generally be developed in
the design of reservoirs having flood control as 2 major function.

Table 3-2. High Fiow Volume-Duration Data
- VOLUME-DURATION DATA - FISHKILL CR AT BEACON, NY - DAILY FLOWS

HIGHEST MEAN VALUE FOR DURATION, FLOW,CFS

YEAR 1 3 7 15 30 60 90 120 183

1845 2080.0 1936.7 1714.3 1398.7 1106.8 752.3 742.2 649.4 559.2
1946 1360.0 1180.3 923.0 837.3 §57.8 605.2 476.2 451.5 379.9
1947 1800.0 1616.7 1159.1 820.5 687.1 611.9 558.5 485.8 396.4
1948 2660.0 2430.0 2322.9 1641.7 1145.1 862.0 706.2 638.1 512.7
1948 2900.0 2346.7 1715.7 1358.9 888.9 680.7 586.8 522.4 422.4
1850 1050.0 908.7 746.9 639.7 588.1 455.9 423.0 387.2 335.1
1951 2160.0 1886.7 1744 .3 1248.1 872.8 832.1 781.2 689.8 568.9
1952 2870.0 2266.7 1557.6 1186.5 1032.8 925.1 854.1 732.6 692.9
1953 2850.0 2233.3 1644.3 1317.2 1145.5 984.6 831.1 794 .4 654.5
1854 1520.0 1096.7 811.7 620.4 482.9 397.0 405.7 372.7 348.1
1855 6970.0 4536.7 2546.1 1360.0 758.2 608.0 494.0 463.1 478.7
1956 6760.0 5456.7 3354.3 1959.7 1572.8 1080.9 767.7 635.8 641.7
1957 1230.0 1117.3 1037.7 758.9 524.2 408.8 363.3 373.4 324.4
1958 2130.0 1916.7 1587.1 1354.5 1128.1 872.0 848.2 777.8 654.1
1859 1670.0 986.7 782.1 586.6 517.6 486.7 437.5 398.8 346.2
1860 2080.0 1770.0 1374.3 1046.9 712.3 605.5 530.5 515.1 468.4
1861 3440.0 2966.7 2155.7 1590.2 1152.3 845.2 759.5 656.2 491.4
1962 2570.0 2070.0 1547.7 1105.0 857.7 600.9 461.3 429.4 325.0
1863 1730.0 1616.7 1309.0 1216.0 800.8 569.1 438.0 370.8 305.9
1864 1300.0 1106.7 945.3 737.8 541.2 514.8 486.6 450.1 368.3
1965 900.0 826.3 652.6 455.7 375.8 303.3 275.7 235.¢0 175.0
1966 830.0 774.7 693.3 546.5 445.7 352.5 296.2 272.5 208.0
1967 1520.0 1416.7 1247.1 1023.5 906.8 701.3 581.4 521.1 436.8
1968 3500.0 2810.0 1934.3 1328.5 878.7 611.7 609.5 567.3 460.3

Note - Data based on water year of October 1 of preceeding year through September 30
of given year.
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b. Data for Comprehensive Series. Data to be used for a comprehensive flood
volume-~duration frequency study should be selected from nearly complete water year
records. Unless overriding reasons exist, the durations in Table 3-2 should be used in
order to assure consistency among various studies for comparison purposes. Maximum
flood events should be selected only for those years when recorder gages existed or when
the maximum events can be estimated by other means. Where a minor portion of a water
year’s record is missing, the longer-duration flood volumes for that year can often be
esiimated adequately. If upsiream regulation or diversion is known to have an effect, care
should be exercxsed to assure that the period selected is t e one when flows would have

)

7

J
r

c. Statistics for Comprehensive Series.

(1) The probability distribution recommended for flood volume-duration frequency
computations 1s the log-Pearson type III distribution; the same as that used for annual
f lood peaks. In practice only the f irst two moments mean and standard deviations are

based on SKdllUl’I data. As GISCUSSBQ lﬂ DCLUU“ J .), the skew LUC[[]L]CI’I[ Sl'lUUlU not be

based solely on the station record, but should be weighted with information from regional
studies, To insure that the frequencv curves for each duration are consistent. and
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especially to prevent the curves from crossing, it is desirable to coordinate the variation in
standard deviation and skew with that of the mean. This can be done graphically as
shown in Figure 2-6. For a given skew coefficient, there is a maximum and minimum
allowable slope for the standard deviation-versus-mean relation which prevents the curves
from crossing within the estabiished limits. For instance, to keep the curves from crossing
within 99.99 and .01 percent chance exceedances with a skew of 0., the slope must not

axraad Y60 nar ha lace than YEQ racmantivaly Tha valua Af thie ﬂ‘l\nA fancrraint 1o
TAWVVUL LUJ, HIVI VL IV LAl T.oVU T, IGOPG\-LIVUI] RIIv Valuv Vi WU iVpPe wULDtI allit IB

found by stating that the value of one curve (X, for curve A) must equal or exceed the
value for a second curve (X_ for curve B) at the desired exceedance frequency. Each of
these values can be found by substitution into Equation 3-4 (the K for zero skew and
99.99 percent chance exceedance is -3.719):

X 2 X4
X, +(-3.7119)S, > X;+(-3.719)S,
3719 (S-S > X;-X,
B > 0.269
(X - X,)
where:

X, = Value of frequency curve A at 99.99 percent chance exceedance
Xg = Vaiue of frequency curve B at 99.99 percent chance exceedance
X, = Mean of frequency curve A
ie = Mean of frequency curve B
SA = Standard deviation of frequency curve A
S, = Standard deviation of frequency curve B

)
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Figure 3-6. Coordination of Flood-Volume Statistics.
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(2) When the skew changes between durations, it is probably easiest to adopt
smoothed relations for the standard deviation and skew and input the statistics into a
computer program that computes the ordinates. The curves can then be inspected for

consistency.

(3) If the statistics for the peak flows have been computed according to the
procedures in Bulletin 17B, the smoothing relations shouid be forced through those points.
The procedure for computing a least-squares line through a given intersection can be
found in texts describing regression analyses.

omprehensiv

(1) General Procedure. Frequency curves of flood volumes are computed
analytically using general principles and methods of Chapters 2 and 3. They should also

be shown graphically and compared with the data on which they are based. This is a
general check on the analytic work and will ordinarily reveal any inconsistency in data
and methodology. The computed frequency curves and the observed data should be
plotted on a single sheet for comparison purposes, Figure 3-7.
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Figure 3-7. Flood-Volume Frequency Curves.
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(2) Interpolation Between Fixed Durations. The runoff volume for any specified

frequency can be determined for any duration between 1-day and 365-days by drawing a
curve on logarithmic paper relating mean discharge (or volume) to duration for that
specified frequency (see Figure 3-8a). When runoff volumes for durations shorter than 24
hours are important, special frequency studies should be made. These could be done in
the same manner as for the longer durations, using skew coefficients interpolated in some

reasonable manner between those used for peak and 1-day flows.
e. Applications of Fl Volume-Duration Fr nci

(1) Volume-duration Curves. The use of flood volume-duration frequencies in
solving reservoir planning, design, and operation problems usually involves the
construction of volume-duration curves for specified frequencies. These are drawn first
on logarithmic paper for interpolation purposes, as illustrated on Figure 3-8a. The mean
discharge values are multiplied by appropriate durations to obtain volumes and are then
replotted on an arithmetic grid as shown on the Figure 3-8b. A straight line on this grid
represents a constant rate of flow. The straight line represents a uniform flow of 1,500
cfs, and the maximum departure from the 2% chance exceedance curve demonstrates that
a reservoir capacity of 16,000 cfs-days (31,700 acre-feet) is required to control the
indicated runoff volumes by a constant release of 1,500 cfs. The curve also indicates that
a duration of about 8 days is critical for this project release rate and associated

flood-control storage space.

2) licati ingle Reservoir. In the case of a single flood-control reservoir
located immediately upstream of a single damage center, the volume frequency problems
are relatively simple. A series of volume-duration curves, similar to that shown on Figure
3-8, corresponding to selected exceedance frequencies should first be drawn. The project
release rate should be determined, giving due consideration to possible channel
deterioration, encroachment into the flood plain, and operational contingencies. This
procedure can be used not only as an approximate aid in selecting a reservoir capacity, but
also as an aid in drawing filling-frequency curves.

(3) Application to a Reservoir System. In solving complex reservoir problems,

representative hydrographs at all locations can be patterned after one or more past floods.
The ordinates of these hydrographs can be adjusted so that their volumes for the critical
durations will equal corresponding magnitudes at each location for the selected frequency.
A design or operation scheme based on regulation of such a set of hydrographs would be
reasonably well balanced. Some aspects of this problem are described in Section 3-9g.

3-9. Effects of Flood Contrgl Works on Flood Frequencies.

a. Nature of the Problem. Flood control reservoirs are designed to substantially
affect the frequency of flood flows (or flood stages) at various downstream locations.
Many land use changes such as urbanization, forest clearing, etc. can also have significant
effects on downstream flood flows (see Section 3-10). Channel improvements (intended to
reduce stages) and levee improvements (intended to confine flows) at specified locations
can substantially affect downstream flows by eliminating some of the natural storage
effects. Levees can also create backwater conditions that affect river stages for a
considerable distance upstream. The degree to which flows and stages are modified by
various flood control works or land use changes can depend on the timing, areal
distribution and magnitude of rainfall (and snowmelt, if pertinent) causing the flood.
Accordingly, the studies should include evaluations of the effects on representative flood
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events, with careful consideration given to the effects of different temporal and areal
distributions.

b. Terminology.

(1) Natural Conditions. Natural conditions in the drainage basin are defined as
hydrologic conditions that would prevail if no regulatory works or other works of man
were constructed. Natural conditions, however, include the effects of natural lakes,
swamp areas, etc.

(2) Present Conditions. Present or base conditions are defined as the conditions that
exist as of the date of the study or some specified time.

(3) Without-Project Conditions. Without-project conditions are defined as the

conditions that would exist without the projects under consideration, but with all existing
projects and may include future projects whose construction is imminent.

(4) With-Project Conditions. With-project conditions are defined as the conditions
that will exist after the projects under consideration are completed.

c. rvoir-Level Fr jon.
(1) Factors to be Considered. Factors affecting the frequency of reservoir levels

include historical inflow rates and anticipated future inflow rates estimated by
volume-frequency studies, the storage-elevation curves, and the plan of reservoir
regulation including location and size of reservoir outlets and spillway. A true frequency
curve of annual maxima or minima can only be computed when the reservoir completely
fills every year. Otherwise, the events would not be independent. If there is dependence
between annual events, the ordinate should be labeled "percent of years exceeded" for
maximum events and "percent of years not exceeded" for minimum events.

(2) Computation and Presentation of Results. A frequency curve of annual

maximum reservoir elevations (or stages) is ordinarily constructed graphically, using
procedures outlined in Section 2-4. Observed elevations (or stages) are used to the extent
that these are available, if the reservoir operation will remain the same in the future.
Historical and/or large hypothetical floods may also be routed through the reservoir using
future operating plans. A typical frequency curve is illustrated on Figure 6-4.
Elevation-duration curves are constructed from historical operation data or from routings
of historical runoff in accordance with procedures discussed in Section 2-2, Figure 3-9.
Such curves may be constructed for the entire period of record or for a selected wet
period or dry period. For many purposes, particularly recreation uses, the seasonal
variation of reservoir elevation (stages) is important. In this case a set of frequency or
duration curves for each month of the year may be valuable. One format for presenting
this information is illustrated on Figure 3-10.
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d. Effects of Reservoirs on Flows at Downstream Points.
(1) Routing for Period of Record. The frequency of reservoir outflows or of flows

at a downstream location can be obtained from routings of the period-of-record runoff by
the following methods:

(a) Determine the annual maximum flow at each location of interest and construct a
frequency curve of the regulated flows by graphical techniques (Section 2-4).

{b) Construct a graph of with-project versus without-project flows at the location of
interest and draw a curve relating the two quantities as illustrated on Figure 3-11. The
points should be balanced in the direction transverse to the curve, but factors such as
flood volume of the events and reliability of regulation must be considered in drawing the
curve. This curve can be used in conjunction with a frequency curve of without-project
flows to construct a frequency curve of with-project flows as illustrated on Figure 3-12.
This latter procedure assures consistency in the analysis and gives a graphical presentation
of the variability of the regulated events for a given unregulated flow.

(2) Use of Hvpothetical-Flood Routings. Usually recorded values of flows are not

large enough to define the upper end of the regulated frequency curve. In such cases, it is
usually possible to use one or more large hypothetical floods (whose frequency can be
estimated from the frequency curve of unregulated flows) to establish the corresponding
magnitude of regulated flows. These floods can be multiples of the largest observed
floods or of floods computed from rainfall; but it is best not to multiply any one flood by
a factor greater than two or three. The floods are best selected or adjusted to represent
about equal severity in terms of runoff frequency of peak and volumes for various
durations. The routings should be made under reasonably conservative assumptions as to
initial reservoir stages.

(3) Incidental Control by Water Supply Space. In constructing fre Tuency curves of

regulated flows, it must be recognized that reservoir operation for purp :es other than
flood control will frequently provide incidental regulation of floods. H..wever, the
availability of such space cannot usually be depended upon, and its value is considerably
diminished for this reason. Consequently, the effects of such space on the reduction of
floods should be estimated very conservatively.

(4) Allowan r rational ingencies. In constructing frequency curves of
regulated flows, it should be recognized that actual operation is rarely perfect and that
releases will frequently be curtailed or diminished because of unforeseen operation
contingencies. Also, where flood forecasts are involved in the reservoir operation, it must
be recognized that these are subject to considerable uncertainty and that some allowance
for uncertainty will be made during operation. In accounting for these factors, it will be
found that the actual control of floods is somewhat less than could be expected if full
release capacities and downstream channel capacities were utilized efficiently and if all
forecasts were exact.

(5) Runoff from Unregulated Areas. In estimating the frequency of runoff at a

location that is a considerable distance downstream from one or more reservoir projects, it
must be recognized that none of the runoff from the intermediate areas between the
reservoir(s) and the damage center will be regulated. This factor can be accounted for by
constructing a frequency curve of the runoff from the intermediate area, and using this
curve as an indicator of the lower limit for the curve of regulated flows. Streamflow
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routing and combining of both the flows from the unregulated area and those from the
regulated area is the best procedure for deriving the regulated frequency curve.

. f Channel v nd Floodw mprovements. The effect of channel,
levee and floodway improvements on river stages at the project location and on river
discharges downstream from the project location can generally be evaluated by routing
several typical floods through the reaches of the improvement and the upstream reaches
affected by backwater. The stages or discharges thus derived can be plotted against
corresponding without- project values, and a smooth curve drawn. This curve could be
used in conjunction with a frequency curve of without-project values to construct a
frequency curve of with-project values as discussed in Paragraph 3-09d(1)b.
Corresponding stages upstream from the selected control point can be estimated from
water-surface profile computations.

han in -Dischgr ionships. Changes in stage-discharge relations
due to channel improvements, levee construction or flow obstructions can best be
evaluated by computing theoretical water surface profiles for each of a number of
discharges. The resulting relationships for modified conditions can be used to modify
routing criteria to enable evaluation of the downstream effects of these changes.

g. Effects of Multiple Reservoir Systems.

(1) Representative events. When more than one reservoir exists above a damage
center, the problem of evaluating reservoir stages and downstream flows under project
conditions becomes increasingly complex. Whenever practicable, it is best to make
complete routings of five to ten historic flood events and a large event that has been
developed from a hypothetical rainfall pattern. If necessary, it is possible to supplement
these events by using multiples of the flow values. Care muse be exercised in selecting
events that have representative flood volumes, timings, and areal distributions. Also,
there should be a balance of events caused by particular climatic factors, i.e. snowmelt,
tropical storm, thunderstorm, etc. Furthermore, the flood-volume-duration characteristics
of the hypothetical events should be similar to the recorded events (see Section 3-8).
Hypothetical events must be used with caution, however, because certain characteristics of
atypical floods may be responsible for critical flooding conditions. Accordingly, such
studies should be supplemented by a critical examination of the potential effects of atypical
floods.

(2) Computer Program. It is generally impossible to make all of the flood routings
necessary to evaluate the effect of a reservoir system by hand computations. Computer
programs have been developed to route floods through a reservoir system with complex
operational criteria (55).

3-10. Effects of Urbanization,

a. General Effects. Urbanization has two major effects on the watershed which
influence the runoff characteristics. First, there is a substantial increase in the impervious
area, which results in more water entering the stream system as direct runoff. Second, the
drainage system collecting the runoff is generally more efficient and tends to concentrate
the water faster in the downstream portion of the channel system. It is important to keep
these two effects in mind when considering the changes in the flood peak frequency curve
caused by increasing urbanization.
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b. Effect on Freguencv Relations. A general statement can be made about the
effects of urbanization on flood-peak frequency relations. The usual effect on the
frequency relation is to cause a significant increase in the magnitude of the more frequent
events, but a lesser increase in the less frequent events. This results in an increase in the
mean of the annual flood peaks, a decrease in the standard deviation and an unpredictable
effect on the skew coefficient (see Figure 3-13). The resulting frequency relation may
not fit any of the standard theoretical distributions. Graphical techniques should be
applied if a good fit is not possible by an analytical distribution.

c. Other Considerations. The actual effect of urbanization at a specific location is
dependent on many factors. Some of the factors that must be considered are basin slope,
basin shape, previous land use and ground cover, number of depressional areas drained,
magnitude and nature of urban development and the typical flood source (snowmelt,
thunderstorm, hurricane, or frontal storm).It is possible for urbanization to cause a
decrease in the flood peaks at a particular site. For instance, consider an area downstream
of two tributary areas of such size and shape that the large floods are caused by the
addition of the nearly coincident peaks from the two tributaries. Urbanization in one of
the tributary areas will likely cause the contribution from this area to arrive downstream
earlier. This change in the timing of the peaks would result in lower downstream peaks.
Of course, when both areas have become equally urbanized, the flood peaks may coincide
again. The construction of bridges or other encroachments can reduce the flood peak
downstream, but causes backwater flooding upstream.
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Figure 3-13. Typical Effect of Urbanization on Flood Frequency Curves.
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d. Adjustment of a Series of Nonstationary Peak Discharges. When the annual peak

discharges have been recorded at the outlet of a basin which has been undergoing
progressive urbanization during the period of record, the peak discharges are
nonstationary because of the varying basin condition. It is generally necessary to adjust
the discharges to a stationary series representative of existing conditions. One approach
to adjusting the peaks to a stationary series is as follows:

(1) Develop and calibrate a rainfall~runoff model! for existing basin conditions and
for conditions at several other points in time during the period of record.

(2) Develop a hypothetical storm for the basin using generalized rainfall criteria,
such as that contained in Weather Bureau Technical Paper 40 (14). Select the
magnitude of the storm, e.g., a 25-year recurrence interval, to be used. The
recurrence interval is arbitrary as it is not assumed in this approach that runoff
frequency is equal to rainfall frequency. The purpose of adopting a specific
magnitude is to establish a base storm to which ratios can be applied for subsequent
steps in the analysis.

(3) Apply several ratios (say 5 to 8) to the hypothetical storm developed in the
previous step such that the resulting calculated peak discharges at the gage will cover
the range desired for frequency analysis. Input the balanced storms to the
rainfall-runoff model for each of the basin conditions selected in step (1), and
determine peak discharges at the gaged location.

(4) From the results of step (3), plot curves representing peak discharge versus storm
ratio for each basin condition (or point in time).

(5) Use the curves developed in step (4) to adjust the observed annual peak
discharges. For example, an observed annual peak discharge that occurred in 1975 is
adjusted by entering the "1975" curve (or interpolating) with that discharge, locating
the frequency of that event, and reading the magnitude of the adjusted peak from
the base-condition curve for the same frequency. The adjusted peak thus obtained is
assumed to be the peak discharge that would have occurred for the catchment area
and development at the base condition. It is not necessary to adjust to natural
conditions. A stationary series could be developed for one or more points in time.

(6) A conventional frequency analysis can be performed on the adjusted peak
discharges determined in the preceding step. If the data represent natural conditions,
Bulletin 17B procedures would be applicable. If the basin conditions represent
significant urbanization, graphical analysis may be appropriate.

e. Development of Frequency Curves at Ungaged Sites. There are several

approaches that can be taken to develop frequency curves at ungaged sites that have been
subject to urbanization. In order of increasing difficulty, they are: 1) application of
simple transfer procedures (e.g., Q = CIA); 2) application of available region-specific
criteria, e.g., USGS regression equations; 3) application of rainfall-runoff models to
hypothetical storm events; 4) application of simple and detailed rainfall-runoff models
with observed storm events and 5) complete period-of-record simulation. As approaches
(3) and (4) are often applied, the computational steps are presented in some detail.

3-30



EM 1110-2-1415
5 Mar 93

(1) Hypothetical Storm Approach

(a) Develop peak-discharge frequency curve for specific land use conditions
from available gaged data and/or regional relationships.

(b) Qevelop balanced storms of various frequencies using data from generalized
criteria, a nearby gage or the equivalent.

(¢) Develop rainfall-runoff model for the specific watershed with the adopted
land-use conditions. Calibrate runoff and routing parameters by reproducing
observed hydrographs occurring under natural conditions.

(d) Input balanced storms (from b) to rainfall-runoff model (from c).
Determine exceedance probabilities to associate with balanced storms from
adopted specific land-use conditions peak discharge frequency curve (from a)
with computed peak discharges.

(e) Modify parameters of rainfall-runoff model to reflect future urban runoff
characteristics. Input balanced storms to the urban- conditions model.

(f) Plot results assuming frequency of each event is the same for both the
adopted land use and the future urban conditions.

(2) "Simple” and Detailed Simulation of Historic Events

(a) Simulate all major historic events with a relatively simple model to establish
the ranking of events and an approximate peak discharge for each. The
approximate peaks could be developed by using a multiple linear regression
approach, by using a very simple rainfall-runoff model, or by any other
approach that will capture the hydrologic response of the basin.

(b) Perform a conventional frequency analysis of the approximate peaks
obtained in step a.

(c) Make detailed simulations of selected events and correlate the more precise
peaks with the approximate peaks.

(d) Use the relationship developed in step c to determine the desired frequency
curve. The same approach can be followed for both existing and future
conditions.
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CHAPTER 4
LOW-FLOW FREQUENCY ANALYSIS

4-1. Uses. Low-flow frequency analyses are used to evaluate the ability of a stream to
meet specified flow requirements at a particular location. The analysis can provide an
indication of the adequacy of the natural flow to meet a given demand with a stated
probability of experiencing a shortage. Additional analyses can indicate the amount of
storage that would be required to meet a given demand, again with a stated probability of
being deficient. The design of hydroelectric power plants, determination of minimum
flow requirements for water quality and/or fish and wildlife, and design of water storage
projects can benefit from low-flow frequency analysis.

4-2. Interpretation.

a. Analytical frequency techniques are usually not applicable to low-flow data
because most theoretical frequency distributions cannot satisfactorily fit the recorded data.
It is recommended that graphical techniques be used and that known geologic and
hydrologic conditions be kept in mind when developing the relationships. As the low
values are the major interest, the data are arranged with the smallest value first. The
probability scale is usually labeled "percent chance nonexceedance."

b. Annual low flows are usually computed for several durations (in days) with the
flow rate expressed as the mean flow for the period. For example, the USGS WATSTORE
output provides the mean flow values for daily durations of 1, 3, 7, 14, 30, 60, 90, 120
and 183 days. The default values for the HEC program STATS are the same with the
exception of using a 15-day duration instead of 14 (Table 4-1). Often a climatic year
from April 1 to March 31 is specified to provide a definite separation of the seasonal
low-flow periods. Figure 4-1 is a plot of the data in Table 4-1.

4-3. Application Problems.

a. Basin Development. The effects of any basin developments on low flows are
usually quite significant. For example, a relatively moderate diversion can be neglected
when evaluating flood flow relations, but it would reduce, or even eliminate, low flows.
Accordingly, one of the most important aspects of low flows concerns the evaluation of
past and future effects of basin developments.

b. Multi-Year Events. In regions of water scarcity and where a high degree of
development has been attained, projects that entail carryover of water for several years
are often planned. In such projects it is desirable to analyze low-flow volume frequencies
for periods ranging from 1-1/2 to 8-1/2 years or more. Because the number of
independent low-flow periods of these lengths, in even the longest historical records, is
very small and because the concept of multi- annual periods is somewhat inconsistent with
the basic concept of an "annual event;" there is no truly satisfactory way for computing
the percent chance nonexceedance for low-flow periods that are more than 1 year in
length. One procedure described in reference (37) has been used with long sequences of
synthetically generated streamflows to derive estimates of drought frequency. Although
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Table 4-1. Low-Flow Volume-Duration Data.

- VOLUME-DURATION DATA - FISHKILL CR AT BEACON, NY - DAILY FLOWS

e . - - R e = = = e ——————— -

YEAR 1 3 7 15 30 60 80 120 183

1945 82.0 104 .0 115.1 127.7 143.0 179.5 220.7 2541 305.3
1946 9.4 12.8 17.6 21.3 28.5 49.8 62.1 58.7 75.4
1947 9.4 12.8 17.3 18.0 21.2 32.1 41.0 62.0 137.0
1948 8.3 10.2 15.7 15.7 18.9 21.6 27 .4 33.5 78.1
1949 7.1 8.2 8.0 9.1 10.0 11.3 12.3 14.3 21.2
1950 22.0 22.0 23.8 27.0 32.6 37.0 43.1 51.1 119.0
1951 20.0 33.3 40.8 k5.5 58.4 73.2 84.0 88.7 116.4
1952 34.0 39.7 43.0 4.0 46.2 64.6 100.1 87.9 135.3
1953 4. 4 4.8 4.8 7.3 10.4 11.0 15.2 25.3 49.9
1954 8.4 9.5 12.3 14.6 16.7 22.9 39.8 98.8 160.8
1955 6.1 6.3 7.0 11.2 14.7 37.2 67.6 1484 247.9
1956 18.0 21.3 23.0 26.8 28.5 53.5 58.5 71.3 98.2
1957 3.7 5.1 5.8 6.4 8.9 9.8 12.6 15.5 25.6
1958 12.0 13.3 17 .4 19.2 23.8 29.6 41.5 50.9 118.5
1959 17.0 17.3 20.85 25.1 39.0 49.8 53.2 60.4 111.0
1960 48.0 48.3 53.3 63.9 77.5 122.1 136.3 149.1 213.9
1861 17.0 17.0 19.7 22.9 27.9 32.1 31.9 37.2 57.2
1962 5.9 6.6 7.0 7.8 9.9 15.0 16.7 20.6 41.9
1863 19.0 19.0 19.6 21.6 27.4 32.1 38.8 58.9 70.5
1964 1.1 1.4 1.8 2.5 4.2 7.1 9.0 11.5 19.1
1865 5.7 6.7 9.9 11.7 12.1 13.7 15.8 20.6 26.1
1966 4.0 4.5 4.7 4.8 5.0 6.4 13.2 21.8 B4.8
1967 43.0 44.0 49.3 58.1 62.0 92.4 122.4 147.2 188.6
Note - Data based on Climatic Year of April 1 of given year through March 31 of next year.

the results obtained through the use of this procedure seem reasonable, it is impossible to
verify the accuracy of the frequency estimates.

c. Resgionalization. Regionalization of low-flow events is usually not very
successful. The variations in geologic conditions such as depth to ground water, size of
ground water basin, permeability of the aquifer, etc., are not easily quantifiable to enable
translation into probable low-flow rates. It may be possible to estimate low-flow rates on
a per unit area basis for a given exceedance frequency if the study area is relatively
homogeneous with respect to geology, topography, and climate. If information is needed
at several ungaged sites, the procedures described by Riggs (28) should be reviewed for
applicability.
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CHAPTER 5
PRECIPITATION FREQUENCY ANALYSIS

5-1. General Procedures. The computation of frequency curves of station
precipitation can be done by procedures similar to those for streamflow analysis described
in the preceding sections. Both graphical and analytical methods may be used. In
precipitation studies, however, instantaneous peak intensities are ordinarily not analyzed
since they are virtually impossible to measure and are of little practical value. Cumulative
precipitation amounts for specified durations are commonly analyzed, mostly for durations
of less than 3 or 4 days. The National Weather Service has traditionally used the
Fisher-Tippett Type I frequency distribution with Gumbel!’s fitting procedure. The
logarithmic normal, Pearson Type III and log-Pearson Type III (Figure 5-1) distributions,
have also been used with success. Station precipitation alone is not adequate for most
hydrologic studies, and some method of evaluating the frequency of simultaneous or
near-simultaneous precipitation over an area is necessary. Procedures for obtaining
depth-area frequency curves are usually available from National Weather Service
publications (references are given in subsequent paragraphs).

Davis WSW, CA 1872-1886
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Figure 5-1. Frequency Curve, Annual Precipitation.

5-1



EM 1110-2-1415
5 Mar 93

5-2. Available Regional Information. Where practical, use should be made of previous

precipitation-frequency-duration studies that have incorporated regional information. For
durations of 5 to 60 minutes in an area generally east of 105th meridian, see Hydro-35 (9).
For durations of 2 to 24 hours in the same area see Technical Paper 40 (10). Because of
the orographic effect, individual reports have been prepared for each of the 11 western
states (24). These reports have maps for 6- and 24-hour durations with extrapolation
procedures to obtain durations less than 6 hours. Longer duration events (2- to 10-days)
are presented in references (21), (22) and (23).

-3. Derivation of Flood-F ncy Relations fr

a. Application. Precipitation-frequency relations are often used to derive
flood-frequency relations where inadequate flow data are available or where existing (or
proposed) watershed changes have modified (or will modify) the rainfall-runoff
relationships. Guidelines for developing runoff frequencies from precipitation
frequencies are presented in references (10) and (44). Flood-frequency curves developed
by rainfall-runoff procedures often have less variance (lower standard deviation) than
those developed from annual flood peaks. This results because not all the possible loss
rates for a given magnitude of precipitation are modeled. If extensive use will be made of
frequency curves derived by rainfall-runoff modeling, an appropriate ratio adjustment for
the standard deviation should be developed for the region.

b. Calibration. Reference (44) describes the procedures involved in calibrating a
HEC-1 model to a flow-frequency curve based either on gaged data from a portion of the
basin or on regional flood-frequency relations. The coefficients from the calibrated
model must be consistent with those from nearby basins that have also been modeled. It
must be remembered that a frequency curve computed from observed flood peaks is based
on a relatively smalil sample. It is possible that the flow-frequency curve derived from
precipitation-frequency data is more representative of the population flow-frequency
curve than the one computed from the statistics of the observed flood peaks. But, there
are also errors in calibrating the model and establishing loss rates approximate with the
different frequency events. Therefore, the derivation of frequency relations by
rainfall-runoff modeling requires careful checking for consistency at every step.

c. Partial Duration. The precipitation-frequency relations presented in the National
Weather Service publications represent all the events above a given magnitude; therefore,
these relations are from a partial-duration series. The resulting flood frequency relations
must be adjusted if an annual peak flood frequency relationship is desired. Or, more
typically, the partial-duration series precipitation estimates are adjusted to represent
annual series estimates prior to use.
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CHAPTER 6
STAGE (ELEVATION) - FREQUENCY ANALYSIS

6-1. Uses. Maximum stage-frequency relations are often required to evaluate inundation
damage. Inundation can result from a flooding river, storm surges along a lake or ocean,
wind driven waves (runup), a filling reservoir, or combinations of any of these. Minimum
elevation-frequency curves are used to evaluate the recreation benefits at a lake or
reservoir, to locate a water supply intake, to evaluate minimum depths available for
navigation purposes, etc. (Stages are referenced to an arbitrary datum: whereas, elevations
are generally referenced to mean sea level.)

6-2. Stage Data.

a. The USGS WATSTORE Peak Flow File has, in addition to annual peak flows,
maximum annual stages at most sites. Also, some sites located near estuaries have only
stage information because the flow is affected by varying backwater conditions.

b. River stages can be very sensitive to changes in the river channel and floodway.
Therefore, the construction of levees, bridges, or channel modifications can result in stage
data that is non-homogeneous with respect to time. For riverine situations, it is usually
recommended that the flow-frequency curve (Figure 6-1) and a rating curve (stage versus
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flow, Figure 6-2) be used to derive a stage-frequency curve (Figure 6-3). A
stage~-frequency curve derived by indirect methods may not always represent the true
relation if the site is subject to occasional backwater situations. Backwater conditions can
be caused by an ice jam, a debris flow, a downstream reservoir, a high tide, a storm surge,
or a downstream river. A coincident frequency analysis may be necessary to obtain an
accurate estimate of the stage-frequency relationship (see Chapter 11).

¢. Usually the annual extreme value is used to develop an annual series, but a
seasonal series or a partial-duration series could be developed if needed. Caution must be
used in selecting independent events. Independent events are not easily determined if the
events are elevations of a large lake or reservoir; in fact even the annual events may be
significantly correlated.

6-3. Freguency Distribution. Stage (elevation) data are usually not normally distributed
(not a straight line on probability paper). Therefore, an analytical analysis should not be
made without observing the fit to the plotted points (see Chapter 2). Usually, an
arithmetic-probability plot is appropriate for stage or elevation data, but there may be
situations where a logarithmic or some other appropriate transformation will make the plot
more nearly linear. When drawing the curve, known constraints must be kept in mind.

As an example, the bottom elevation, bankfull stage, levee heights, etc., would be
important for a riverine site. The minimum pool, top of conservation pool, top of flood
control pool, spillway elevation, operation criteria, etc., all influence the
elevation-frequency relation for a reservoir, Figure 6~-4. These constraints usually make
these frequency relations very non-linear. Extrapolation of stage (elevation) frequency
relations must be done very cautiously. Again, any constraints acting on the relations
must be used as a guide in drawing the curves. Historical information can be incorporated
into a graphical analysis of stage (elevation) data by use of the procedures in Appendix 6
of Bulletin 17B (ref 46). The statistical tests (Appendix 4, ref 46) to screen for outliers
should not be applied unless the stage (elevation) data can be shown to nearily fit a normal
distribution.

6-4. Expected Probability. The expected probability adjustment should not be made to
frequency relations derived by graphical methods. The median plotting position formula
corrects for the bias caused by small sample sizes. The expected probability adjustment
should be made when an analytical method is used directly to derive the stage (elevation)
frequency relation. The expected probability adjustment should be made to the
flow-frequency curve when the stage (elevation) frequency relation is derived indirectly.
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CHAPTER 7
DAMAGE-FREQUENCY RELATIONSHIPS

7-1. Introduction.

a. There are three methods that may be used to compute average annual damage and
are herein termed the historic method, the simulation method and the frequency method.
If 50 years of damage information were available for an area that has remained in
essentially the same land use with a reasonably constant level of economic activity,
historic damage could be scaled to the present to account for price differences (inflation)
and the average simply computed. This approach is termed the historic method and is the
most direct but is seldom used because sufficient data usually do not exist and the land use
and economic activity of an area are usually changing.

b. A hydrologic simulation model could be developed, or the historic record used,
along with damage functions to generate a time trace of simulated damage. The average
of the time trace of damage would be the average annual damage. This would be termed
the "simulation” method. The simulation method has the advantage of permitting the use
of complex damage functions that can consider more than a single parameter and thus
enable a more accurate computation of damage. The disadvantage of this method is that
the future floods are assumed to exactly duplicate the historic floods and no consideration
given to the possibility of larger floods.

c. The most widely used approach within the Corps of Engineers is the frequency
technique. This technique is described in detail in Section 7-2. This technique addresses
the disadvantages of the previous two methods, and yet is fairly easily applied.
Experience in the development and application of damage functions is essential to
computation of reasonable estimates. Care should be taken to assure the rating curve is
not looped so that discharge is a unique function of stage. Otherwise more complex
functions that correctly relate stage and discharge should be developed and applied.
Damage functions in agricultural areas are often a function of the season and the duration
of flooding. Sensitivity analysis may be useful in determining the reliability of the
computed expected annual damage considering the uncertainties involved.

omputation of Expected Annual Dam

a. Figure 7-1 shows a schematic of the application of the three basic damage
evaluation functions used to compute the expected value of the annual damage. The term
"expected” is used rather than "average" because a frequency curve is used to represent the
distribution of future flood events and the expected value of damage is computed by the
summation of probability weighted estimates of damage.

b. The steps involved in determining the reduction in annual damage due to project
measures are:

(1) Develop the basic relationships (stage-damage, stage-discharge, and
discharge-exceedance frequency functions) for each index location for existing
conditions.
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(2) Combine the stage-damage and the stage-discharge relations into an intermediate
discharge-damage function. Make certain that the stage datum for the stage-damage
and stape-discharge functions is consistent for the index location.

(3) Combine the discharge-exceedance frequency (in events per year) and
discharge-damage function into a damage-exceedance frequency relationship.

(4) Compute the area beneath the damage-exceedance frequency relation (expected
annual damage) for each index location and sum to obtain the total expected annual

flood damage.

(5) Repeat step (1) for each alternative flood plain management plan under
investigation, i.e., revise the three basic evaluation functions as necessary.

(6) Repeat steps (2)-(4).

(7) Subtract results of step (4) (with project) for each plan from results of step (4)
for without-project measures. The differences will be expected annual damage
reduction (raw damage reduction benefits) for each plan.

7-3. Egquivalent Annual Damage.

a. To determine the expected annual benefit it is necessary to account for the
changes in expected annual damage that might occur over the life of the project. This
adjustment can be of substantial significance. Watershed runoff characteristics may be
changing with time due to changes in land use, there may be long-term adjustments in
alluvial channel flow regimes that would cause the rating curve to change with time, and
the damage potential of structures and facilities will certainly change with time resulting
in changed stage-damage functions.

b. To develop a single measure of the damage potential, the expected annual damage
must be evaluated over time, at say 10 year intervals with revised evaluation functions at
each interval. The revised expected annual damage is discounted to the base period and
then the raw damage value is amortized over the life of the project to obtain equivalent
annual damage. The computer program "Expected Annual Flood Damage Computation"
(54) has the capability to make these computations, and describes in detail the basic
concepts presented in this chapter.
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CHAPTER 8
STATISTICAL RELIABILITY CRITERIA

8-1. QObjective. One principal advantage of analytical frequency analysis is that there are
means for evaluating the reliability of the parameter estimates. This permits a more
complete understanding of the frequency estimates and provides criteria for
decision-making. For instance, a common statistical index of reliability is the standard
error of estimate, which is defined as the root-mean-square error. In general, it is
considered that the standard error is exceeded on the positive side one time out of six
estimates, and equally frequently on the negative side, for a total of one time in three
estimates. An error twice as large as the standard error of estimate is considered to be
exceeded one time in 40 in either direction, for a total of one time in 20. These
statements are based on an assumed normal distribution of the errors; thus, they are only
approximate for other distributions of errors. Exact statements as to error probability
must be based on examination of the frequency curve of errors or the distribution of the
errors. Both the standard error of estimate and the confidence limits are discussed in this

chapter.

8-2. Reliability of Frequency Statistics. The standard errors of estimate of the mean,

standard deviation, and skew coefficient, which are the principal statistics used in
frequency analysis, are given by the following equations:

5 = S/(N)* (8-1)
S¢ = S/(2N)* (8-2)
S = (6N(N-1)/[(N-2)(N+1)(N+3)]}* (8-3)

where:

S; = the standard error of estimate for the mean

Ss = the standard error of estimate for the standard deviation

S, =  the standard error for estimate for the skew coefficient, and S and N are
defined in Section 3-2.

These have been used to considerable advantage, as discussed in Chapter 9, in drawing
maps of mean, standard deviation and skew coefficient for regional frequency studies.

8-3. Reliabilitv of Freguencv Curves. The reliability of analytical frequency

determinations can best be illustrated by establishing confidence limits. The error of the
estimated value at a given frequency based on a sample from a normal distribution is a
function of the errors in estimating the mean and standard deviation. (Note that in
practical application there are errors introduced by not knowing the true theoretical
distribution of the data, often termed model error.) Criteria for construction of
confidence limits are based on the non-central t distribution. Selected values are given in
Table F-9. Using that appendix, the confidence limit curves shown on Figure 8-1
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were calculated. While the expected frequency is that shown by the middle curve, there is
one chance in 20 that the true value for any given frequency is greater than that indicated
by the .05 curve and one chance in 20 that it is smaller than the value indicated by the .95
curve. There are, therefore, nine chances in 10 that the true value lies between the .05
and .95 curves. Appendix E and Example ! in Appendix 12 of Bulletin 17B (40) provide

additional information and example computations.

Fishkill Creek at Baacon, NY 1945-1968
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CHAPTER 9
REGRESSION ANALYSIS AND APPLICATION TO REGIONAL STUDIES

9-]. Nature and Application.

a. General. Regression analysis is the term applied to the analytical procedure for
deriving prediction equations for a variable (dependent) based on given values of one or
more other variables (independent). The dependent variable is the value sought and is to
be related to various explanatory variables which will be known in advance, and which
will be physically related to the dependent variable. For example, the volume of
spring-season runoff from a river basin (dependent variable) might be correlated with the
depth of snow cover in the watershed (explanatory variable). Recorded values of such
variables over a period of years might be graphed and the apparent relation sketched in by
eye. However, regression analysis will generally permit a more reliable determination of
the relation and has the additional advantage of providing a means for evaluating the
reliability of the relation or of estimates based on the relation.

b. Definitions. The function relating the variables is termed the "regression
equation," and the proportion of the variance of the dependent variable that is explained
by the regression equation is termed the "coefficient of determination,” which is the
square of the "correlation coefficient." Correlation is a measure of the association between
two or more variables. Regression equations can be linear or curvilinear, but linear
regression suffices for most applications, and curvilinear regression is therefore not
discussed herein. Often a curvilinear relation can be linearized by using a logarithmic or
other transform of one or more of the variables.

9-2. Calculation of Regression Equations.

a. Simple Regression. In a simple regression (one in which there is only one
independent, or explanatory, variable), the linear regression equation is written:

Y = a+bX 9-1)

in which Y is the dependent variable, X is the independent variable, "a" is the regression
constant, and "b" is the regression coefficient. The coefficient "b" is evaluated from the
tabulated data by use of the following equations:

b = Nyx)/Yx)? (9-2a)
or

b = RS,/S, (9-2b)

in which y is the deviation of a single value Y, from the mean (?) of its series, X is
similarly defined, Sy and Sx are the respective standard deviations and R is computed by
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Equation 9-11. The regression constant is obtained from the tabulated data by use of the
following equation:

a=Y-bX (9-3)

All summations required for a simpie linear regression can be obtained using Equations 9-
8 and 9-9a.

b. Multiple Regression. In a multxple regress:on (one in which there is more than
one explanatory variable) the linear regression equation is written:

Y = a+b,X,+b,X,....+bX, (9-4)

In the case of two explanatory variables, the regression coefficients are evaluated from the
tabulated data by solution of the following simultaneous equations:
U(x)%b,y + Uxyx)b, = J(yx,) (9-5)
Ux1x)by + Yx,)%b, = Hyx,)
In the case of three explanatory variables, the b coefficients can be evaluated from the
tabulated data by solution of the following simultaneous equations:
3(x,0%b, + T(x4xx)b, + Hx,x5)b5 = (yX,) (9-6)
Uxyx,)b, + Z(x.‘,)-"b2 + 2(x,x5)by = (yx,)
I(x,Xg)by + X X5)b, + Yx5)%y = (yX5)
For cases of more than three explanatory variables, the appropriate set of simultaneous
equations can be easily constructed after studying the patterns of the above two sets of
equations. In such cases, solution of the equations becomes tedious, and considerable time
can be saved by use of the Crout method outlined in reference (51) or (52). Also,
programs are available for solution of simple or multiple linear regression problems on

practically any type of electronic computer. For multiple regression equations, the
regression constant is determined as follows:

a = Y-bX,-bX,....-bX, (9-7)

In Equations 9-2, 9-5 and 9-6, the quantities J(x)2, Y(yx) and ¥(x 1X,) can be determined
by use of the following equations:
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Ux)2 = WX - (TX)UN (9-8)
Uyx) =  JYXY)-ITXTY/N (9-9a)
Uxxy) = UXXy) - TX, TX,/N (9-9b)

9-3. Th rrelation fficient an ndard Error.

a. General. The correlation coefficient is the square root of the coefficient of
determination, which is the proportion of the variance of the dependent variable that is
explained by the regression equation. A correlation coefficient of 1.0 would correspond to
a coefficient of determination of 1.0, which is the highest theoretically possible and
indicates that whenever the values of the explanatory variables are known exactly, the
corresponding value of the dependent variable can be calculated exactly. A correlation
coefficient of 0.5 would correspond to a coefficient of determination of 0.25, which
would indicate that 25 percent of the variance is accounted for and 75 percent
unaccounted for by the regression equation. The remaining variance (error variance)
would be 75 percent of the original variance and the remaining standard error would be
the square root of 0.75 (or 87 percent) multiplied by the original standard deviation of the
dependent variable. Thus, with a correlation coefficient of 0.5, the average error of
estimate would be 87 percent of the average errors of estimate based simply on the mean
observed value of the dependent variable without a regression analysis.

b. Determination Coefficient. The sample coefficient of multiple determination (R?)
can be computed by use of the following equation:

b, 2yx,) + by J(yx,) ... + b, Yyx)

R? (9-10)
Xy)?
In the case of simple correlation, Equation 9-10 resolves to:
R? = Jyx)%/Uy)? Yx)? ©-11)

An unbiased estimate of the coefficient of determination is recommended for most
applications, and is computed by the following equation:

R? = 1-(1-R¥(N-1)/df (9-12)

The number of degrees of freedom (df), is obtained by subtracting the number of
variables (dependent and explanatory) from the number of events tabulated for each

variable.

c. Standard Error. The adjusted standard error (S,) of a set of estimates is the
root-mean-square error of those estimates corrected for the degrees of freedom. On the
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average, about one out of three estimates will have errors greater than the standard error
and about one out of 20 will have errors greater than twice the standard error. The
adjusted error variance is the square of the adjusted standard error. The adjusted
standard error or error variance of estimates based on a regression equation is calculated
from the data used to derive the equation by use of one of the following equations:

Uy)? - by Uyx,) - by Yyx,) ... - by Hyx,)

S& = (9-13a)
df

= (1-R?) Uy)%/(N-1) (9-13b)

= (1-R%s? (9-13c)

Inasmuch as there is some degree of error involved in estimating the regression
coefficients, the actual standard error of an estimate based on one or more extreme values
of the explanatory variables is somewhat larger than is indicated by the above equations,
but this fact is usually neglected.

d. Reliability. In addition to considering the amount of variance that is explained by
the regression equation, as indicated by the determination coefficient or the standard
error, it is important to consider the reliability of these indications. There is some chance
that any correlation is accidental, but the higher the correlation and the larger the sample
upon which it is based, the less is the chance that it would occur by accident. Also, the
reliability of a regression equation decreases as the number of independent variables
increases. Ezekiel (8) gives a set of charts illustrating the reliability of correlation
coefficients. It shows, for example, that an unadjusted correlation coefficient (R) of 0.8
based on a simple linear correlation with 12 degrees of freedom could come from a
relationship that has a true value as low as 0.53 in one case out of 20. On the other hand,
the same unadjusted correlation coefficient based on a multiple linear correlation with the
same number of degrees of freedom but with seven independent vartables, could come
from a relationship that has a true value as low as zero in one case out of 20. With only 4
degrees of freedom, an unadjusted correlation coefficient of 0.97 would one time in 20
correspond to a true value of 0.8 or lower, in the case of simple correlation, and as low as
zero in a seven-variable multiple correlation. Accordingly, extreme care must be
exercised in the use of multiple correlation in cases based on small samples.

imple Linear Regression Example.

a. General. An example of a simple linear regression analysis is illustrated on
Figures 9-1 and 9-2. The data for this example are the concurrent flows at two stations
in Georgia for which a two-station comparison is desired (see Section 3-7). The long
record station is the Chattooga, so the flows for this station are selected as X; therefore
the flows for the short record station (Tallulah) are assigned to Y.

b. Phvsical Relationship. The values in the table are the annual peak flows for the

water years 1965-1985 (21 values). These two stations are less than 20 miles apart and are
likely to be subject to the same storm events; therefore, the first requirement of a
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Chattooga River Tallulah River
Flow Log Flow Log
Year X’ X A\ Y
1965 | 27200 4.434568 7440  3.871572 zxz‘ 82.55075 Iy = 73.07071
1966 | 13400 4.127104 5140  3.710963 £x2= 325.93995 £v2= 255.61486
1967 | 15400 4.187520 2800 3.447158 . .
1968 | 5620 3.749736 3100 3.491361 X = 3.93099 T o= 3.47956
1969 | 14700  4.167317 2470  3.392696 2.
1970 | 3480 3.541579 2010 3.303196 (TXY)" = 288.3745%
1971 | 3290 3.517195 976  2.989449 (232
1972 | 7440 3.871572 2160  3.334453 2N . 324.50602
1973 | 19600 4.292256 8500 3.929418 R
1974 | 6400 3.806179 4660 3.668385 2% | el as3
1975 | 6340 3.802089 2410 3.382017 W .
1976 | 18500 4.267171 6530  3.814913 Ix v
1977 | 13000 4.113943 3580 3.553883 ZXIY . 287.20008
1978 | 7850 3.894869 4090 3.611723
1979 | 14800 4.170261 6240 3.795184 2 o
1980 | 10900 4.037426 2880 3.459392 x© = 1.43393 (by equation 9-8)
1981 | 4120 3.514897 1600 3.204119 xy = 1.13351 (v " 9-98)
1982 | s000 3.698970 1960 3.292256 2 . " " .8
1983 | 7910 3.898176 3260 3.513217 y® = 1.26115 ( 98
1984 | 4810 3.682145 2000 3.301029
1985 | 4740 3.675778 1010  3.004321
Computations for a, b, RZ, and R2:
b = 1.13351/1.433922 (by equation 9-2a)
= 0.79049
8 = 3.47956 - (0.79049)(3.93099) (by equation 9-3)
= 0.37213
R = (1.13351)2/(1.43393)¢1.36115) (by equation 9-11)
= 0.658290
£2 2 1 - (1-0.65892)(21-1)/(21-2) (by equation 9-12)
= 0.64031
Computations for standard error:
$¢2 = (1-0.640312)(1.36115)/(21-1) (by equation 9-13b)
= 0.02448
S, = 0.15646

Regression equation: Y = 0.37213 « 0.79049X (by equation 9-1)

79

Yz 2.356X‘°' (without logarithms)

Figure 9-1. Computation of Simple Linear Regression Coefficients.
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regression analysis (logical physical relationship) is satisfied. Because runoff is a
multiplicative factor of precipitation and drainage area, the logarithmic transformation is
likely to be appropriate when comparing two stations with different drainage areas. A
linear correlation analysis was made, as illustrated on Figure 9-1, using equations given in
Section 9-2. The annual peaks for the each station are plotted against each other on
Figure 9-2.

¢. Regression Equation. The regression equation is plotted as Curve A on Figure
9-2. This curve represents the best estimate of what the annual peak Tallulah River
would be given the observed annual peak on the Chattooga River. Although not
computed in Figure 9-1, Curve B represents the regression line for estimating the annual
peak flow for the Chattooga River given an observed annual peak on the Tallulah River.

TWO-STATION COMPARISION EXAMPLE
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CHATTOOG6A RIVER ANNUAL PEAK (X'), CFS

Curve A - Regression line with Y as dependent variable
Curve 8 - Regression line with X as dependent variable

Figure 9-2. Illustration of Simple Regression.
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d. Reliability. In addition to the curve of best fit, an approximate confidence
interval can be established at a distance of plus and minus 2 standard errors from Curve
A. Because logarithms are used in the regression analysis, the effect of adding (or
subtracting) twice the standard error to the estimate is equivalent to multiplying (or
dividing) the annual peak values by the antilogarithm of twice the standard error. In this
case, the standard error is 0.156, and the antilogarithm of twice this quantity is 2.05.
Hence, values of annual peak flow represented by the confidence interval curves are those
of Curve A multiplied and divided respectively by 2.05. There is a 95 percent chance that
the true value of the dependent variable (Y) for a single observed independent value (X)
will lie between these limits. The confidence interval is not correct for repeated
predictions using the same sample (6).

Factors R ibl r Nondetermin

a. General. Factors responsible for correlations being less than 1.0 (perfect
correlation) consist of pertinent factors not considered in the analysis and of errors in the
measurement of those factors considered. If the effect of measurement errors is
appreciable, it is possible in some cases to evaluate the standard error of measurement of
each variable (see Paragraph 9-3c) and to adjust the correlation results from such effects.

b. Measurement Errors. If an appreciable portion of the variance of Y (dependent
variable) is attributable to measurement errors and these errors are random, then the
regression equation would be more reliable than is indicated by the standard error of
estimate computed from Equation 9-13. This is because the departure of some of the
points from the regression line on Figure 9-2 is artificially increased by measurement
errors and therefore exaggerates the unreliability of the regression function. In such a
case, the curve is generally closer to the true values than to the erroneous observed values.
Where there is large measurement error of the dependent variable, the standard error of
estimate should be obtained by taking the square root of the difference of the error
variance obtained from Equation 9-13 and the measurement error variance. If well over
half of the variance of the points from the best-fit line is attributable to measurement
error in the dependent variable, then the regression line would actually yield a better
estimate of a value than the original measurement. If appreciable errors exist in the
values of an explanatory variable, the regression coefficient and constant will be affected,
and erroneous estimates will result. Hence, it is important that values of the explanatory
variables be accurately determined, if possible.

¢. Qther Factors. In the example used in Section 9-4 there may well be factors
responsible for brief periods of high intensities that do not contribute appreciably to
annual precipitation. Consequently, some locations with extremely high mean annual
precipitation may have maximum short-time intensities that are not correspondingly high,
and vice versa. Therefore, the station having the highest mean annual precipitation would
not automatically have the highest short-time intensity, but would in general have
something less than this. On the other hand, if mean annual precipitation were made the
dependent variable, the station having the highest short-time intensity would be expected
to have something less than the highest value of mean annual precipitation. Thus, by
interchanging the variables, a change in the regression line is effected. Curve B of Figure
9-2 is the regression curve obtained by interchanging the variables Y and X. As there isa
considerable difference in the two regression curves, it is important to use the variable
whose value is to be calculated from the regression equation as the dependent variable in
those cases where important factors have not been considered in the analysis.
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d. Average Slope. If it is obvious that all of the pertinent variables are included in
the analysis, then the variance of the points about the regression line is due entirely to
measurement errors, and the resulting difference in slope of the regression lines is entirely
artificial. In cases where all pertinent variables are considered and most of the
measurement error is in one variable, that variable should be used as the dependent
variable. Its errors will then not affect the slope of the regression line. In other cases
where all pertinent variables are considered, an average siope should be used. An average
slope can be obtained by use of the following equation:

b = S,/S, (9-14)

9-6. Multiple Linear Regression Example.

a. General. An example of a multiple linear regression analysis is illustrated on
Figure 9-3. In this case, the volume of spring runoff is correlated with the water
equivalent of the snow cover measured on April 1, the winter low-water flow (index of
ground water) and the precipitation falling on the area during April. Here again, it was
determined that logarithms of the values would be used in the regression equation.
Although loss of 4 degrees of freedom of 12 available, as in this case, is not ordinarily
desirable, the adjusted correlation coefficient attained (0.94) is particularly high, and the
equation is consequently fairly reliable. The computations in Figure 9-3 were made with
the HEC computer program MLRP (reference 50).

b. Logarithmic Transformation. In determining whether logarithms should be used
for the dependent variable as above, questions such as the following should be considered:
"Would an increase in snow cover contribute a greater increment to runoff under
conditions of high ground water (wet ground conditions) than under conditions of low
ground water?" If the answer is yes, then a logarithmic dependent variable (by which the
effects are multiplied together) would be superior to an arithmetic dependent variable (by
which the effects are added together). Logarithms should be used for the explanatory
variables when they would increase the linearity of the relationship. Usually logarithms
should be taken of values that have a natural lower limit of zero and a natural upper limit
that is large compared to the values used in the study.

c. Function of Multiple Regression. It should be recognized that multiple regression

performs a function that is difficult to perform graphically. Reliability of the results,
however, is highly dependent on the availability of a large sampling of all important
factors that influence the dependent variable. In this case, the standard error of an
estimate as shown on Figure 9-3 is approximately 0.038, which, when added to a
logarithm of a value, is equivalent to multiplying that value by 1.09. Thus, the standard
error is about 9 percent, and the 1-in-20 error is roughly 18 percent. As discussed in
Paragraph 9-3d, however, the calculated correlation coefficient may be accidentally high.

9-7. Partial Correlation. The value gained by using any single variable (such as April
precipitation) in a regression equation can be measured by making a second correlation
study using all of the variables of the regression equation except that one. The loss in
correlation by omitting that variable is expressed in terms of the partial correlation
coefficient. The square of the partial correlation coefficient is obtained as follows:

9-8



INPUT DATA

0BS NO OB

VO NOWVEUWN -

10
1
12

s ID

1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947

STATISTICS OF DATA

VARIABLE

LOG SNO
LOG GW
LOG PRCP
LOG @

UNBIASED CORRELATION COEFFICIENTS (R)

LOG Q LOG SNO LOG GW LOG PRCP
.939 .399 .325 .710
.945 .343 .385 634

1.052 .369 .408 .886
{2 .246 .428 .581
666 .181 .316 1.027

1.081 .297 .460 1.315

1.060 .299 SN 1.097
.892 .354 379 .707

1.021 .295 .395 1.240
.920 .321 376 1.091
755 .168 413 1.038
.960 .280 410 979

STANDARD
AVERAGE VARTANCE DEVIATION
.2960 .0050 .0704
.4005 .0028 .0531
.9421 .0572 .2392
9196 .0181

VARIABLE LOG SNO  LOG GW
LOG SNO  1.0000 .0000
LOG GW .0000  1.0000
LOG PRCP -.0459 .1275
Lo a .6308 L6170
REGRESSION RESULTS
INDEPENDENT REGRESSION
VARIABLE COEFFICIENT
LOG SNO 1.621806
LOG GW 1.012912
LOG PRCP .273390
REGRESSION R
CONSTANT SQUARE
-.223698 .9437
Figure 9-3.

LOG PRCP LOG

1.0000 .201

.1346 DEPENDENT
VARIABLE

.6308
4170

1

1.0000

PARTIAL
DETERMINATION

COEFFICI

ENT

.9106
.6814

7451

UNBIASED
R
SQUARE

.9226

9-9

STANDARD
ERROR OF
ESTIMATE

.0375

Example Multiple Linear Regression Analysis.
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a2 = 1 - (1-RZ,0/(1-R2 ) (9-15)

in which the subscript to the left of the decimal indicates the variable whose partial
correlation coefficient is being computed, and the subscripts on the right of the decimal
indicate the independent variables. An approximation of the partial correlation can
sometimes be made by use of beta coefficients. After the regression equation has been
calculated, beta coefficients are very easy to obtain by use of the following equation:

B, = bS./Sy (9-16)

The beta coefficients of the variables are proportional to the influence of each variable on
the result. While the partial correlation coefficient measures the increase in correlation
that is obtained by addition of one more explanatory variable to the correlation study, the
beta coefficient is a measure of the proportional influence of a given explanatory variable
on the dependent variable. These two coefficients are related closely only when there is
no interdependence among the various explanatory variables. However, some explanatory
variables naturally correlate with each other, and when one is removed from the equation,
the other will take over some of its weight in the equation. For this reason, it must be
kept in mind that beta coefficients indicate partial correlation only approximately.

9-8. Verification of Regression Results. Acquisition of basic data after a regression

analysis has been completed will provide an opportunity for making a check of the results.
This is done simply by comparing the values of the dependent variable observed, with
corresponding values calculated from the regression equation. The differences are the
errors of estimate, and their root-mean-square is an estimate of the standard error of the
regression-equation estimates (Paragraph 9-3). This standard error can be compared to
that already established in Equation 9-13. If the difference is not significant, there is no
reason to suspect the regression equation of being invalid, but if the difference is large,
the regression equation and standard error should be recalculated using the additional data
acquired.

9-9. Regression by Graphical Techniques. Where the relationships among variables used

in a regression analysis are expected to be curvilinear and a simple transformation cannot
be employed to make these relationships linear, graphical regression methods may prove
useful. A satisfactory graphical analysis, however, requires a relatively large number of
observations and tedious computations. The general theory employed is similar to that
discussed above for linear regression. Methods used will not be discussed herein, but can
be found in references 8 and 27.

9-10. Practical Guidelines. The most important thing to remember in making
correlation studies is that accidental correlations occur frequently, particularly when the
number of observations is small. For this reason, variables should be correlated only when
there is reason to believe that there is a physical relationship. It is helpful to make
preliminary examination of relationships between two or more variables by graphical
plotting. This is particularly helpful for determining whether a relationship is linear and
in selecting a transformation for converting curvilinear relationships to linear
relationships. It should also be remembered that the chance of accidentally high
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correlation increases with the number of correlations tried. If a variable being studied is
tested against a dozen other variables at random, there is a chance that one of these will
produce a good correlation, even though there may be no physical relation between the
two. In general, the results of correlation analyses should be examined to assure that the
derived relationship is reasonable. For example, if streamflow is correlated with
precipitation and drainage area size, and the regression equation relates streamflow to
some power of the drainage area greater than one, a maximum exponent value of one
should be used, because the flow per square mile usually does not increase with drainage
area when other factors remain constant.

9-11. Regional Frequency Analvsis.

a. General. In order to improve flood frequency estimates and to obtain estimates
for locations where runoff records are not available, regional frequency studies may be
utilized. Procedures described herein consist of correlating the mean and standard
deviation of annual maximum flow values with pertinent drainage basin characteristics by
use of multiple linear regression procedures. The same principles can be followed using
graphical frequency and correlation techniques where these are more appropriate.

b. Freguency Statistics. A regional frequency correlation study is based on the two
principal frequency statistics: the mean and standard deviation of annual maximum flow
logarithms. Prior to relating these frequency statistics to drainage basin characteristics, it
is essential that the best possible estimate of each frequency statistic be made. This is
done by adjusting short-record values by the use of longer records at nearby locations.
When many stations are involved, it is best to select long-record base stations for each
portion of the region. It might be desirable to adjust the base station statistics by use of
the one or two longest-record stations in the region, and then adjust the short-record
station values by use of the nearest or most appropriate base station. Methods of adjusting
statistics are discussed in Section 3-7.

in Ch ristics. A regional analysis involves the determination of
the main factors responsible for differences in precipitation or runoff regimes between
different locations. This would be done by correlating important factors with the
long-record mean and with the long-record standard deviation of the frequency curve for
each station (the long-record values are those based on extension of the records as
discussed in Section 3-7). Statistics based on precipitation measurements in mountainous
terrain might be correlated with the following factors:

- Elevation of station

- General slope of surrounding terrain
- Orientation of that slope

- Elevation of windward barrier

- Exposure of gage

- Distance of leeward controlling ridge
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Statistics based on runoff measurements might be correlated with the following factors:

- Drainage area (contributing)

- Stream length

- Slope of drainage area or of main channel
- Surface storage (lakes and swamps)

- Mean annual rainfall

- Number of rainy days per year

- Infiltration characteristics

- Urbanized Area

r Relationships. In order to obtain satisfactory results using multiple linear
regression techniques, all variables must be expressed so that the relation between the
independent and any dependent variable can be expected to be linear, and so that the
interaction between two independent variables is reasonable. An illustration of the first
condition is the relation between rainfall and runoff. If the runoff coefficient is sensibly
constant, as in the case of urban or airport drainage, then runoff can be expected to bear a
linear relation to rainfall. However, in many cases initial losses and infiltration losses
cause a marked curvature in the relationship. Ordinarily, it will be found that the
logarithm of runoff is very nearly a linear function of rainfall, regardless of loss rates,
and in such cases, linear correlation of logarithms would be most suitable. An illustration
of the second condition is the relation between rainfall, D, drainage area, A, and runoff,
Q. If the relation used for correlation is as follows:

Q = aD+bA +¢ (9-17)

then it can be seen that one inch change in precipitation would add the same amount of
flow, regardless of the size of drainage area. This is not reasonable, but again a
transformation to logarithms would yield a reasonable relation:

logQ = dlogD+elog A +logf (9-18)
or transformed:
Q = fD4A" (9-19)

Thus, if logarithms of certain variables are used, doubling one independent quantity will
multiply the dependent variable by a fixed ratio, regardless of what fixed values the other
independent variables have. This particular relationship is reasonable and can be easily
visualized after a little study. There is no simple rule for deciding when to use
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logarithmic transformation. It is usually appropriate, however, when the variable has a
fixed lower limit of zero. The transformation should provide for near-uniform variance
throughout the range of data.

xample of Regional Correlation. An illustrative example of a regional
correlation analysis for the mean log of annual flood peaks (Y) with several basin
characteristics is shown on Figure 9-4. In this example, the dependent variable is
primarily related to the drainage area size, but precipitation and slope added a small
amount to the adjusted determination coefficient. The regression equation selected for the
regional analysis included only drainage area as an independent variable.

f. Selection of Useful Variables. In the regression equations shown on Figure 9-4,

the adjusted determination coefficient increases as variables are deleted according to their
lack of ability to contribute to the determination. This increase is because there is a
significant increase in the degrees of freedom as each variable is deleted for this small
sample of 20 observations. Both the adjusted determination coefficient and standard error
of estimate should be reviewed to determine how many variables are included in the
adopted regression equation. Even in the case of a slight increase in correlation obtained
by adding a variable, consideration of the increased unreliability of R as discussed in
Section 9-3 might indicate that the factor should be eliminated in cases of small samples.
The simplest equation that provides an adequate predictive capability should be selected.
In this example, there is some loss in determination in only using drainage area, but this
simple equation is adopted to illustrate regional analysis. The adopted equation is:

log Y =1.586 +0.962 log (AREA) (9-20)

or .
Y = 38.5 AREA -9 (9-21)

The R? for this equation is 0.839.

g. Use of Map. Many hydrologic variables cannot be expressed numerically.
Examples are soil characteristics, vegetal cover, and geology. For this reason, numerical
regional analysis will explain only a portion of the regional variation of runoff
frequencies. The remaining unexplained variance is contained in the regression errors,
which varies from station to station. These regression errors are computed by subtracting
the predicted values from the observed values for each station. These errors can then be
plotted on a regional map at the centroid of each station’s area, and lines of equal values
drawn (perhaps using soils, vegetation, or topographic maps as a guide). Combining this
regional error with the regression equation should be much better than using the single
constant for the entire region. In smoothing lines on such a map, consideration should be
given to the reliability of computed statistics. Equations 8-1 and 8-2 can be used to
compute the standard errors of estimating means and standard deviations. In Figure 9-5
for example, Station 5340 (observation 11) had 66 years of record and the standard error
for the mean was 0.028. There is about one chance in three that the mean is in error by
more than 0.029 or about one chance in twenty that the mean is in error by more than
0.056 (twice the standard error). Figure 9-6 shows a map of the errors and Figure 9-5
shows the regional map values for each station and evaluates the worth of the map. The
map has a mean square error of 0.0112 compared to that of 0.0356 for the regression

equation alone.
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1weyT DATA
OBS NO O8S 1D AREA SLOPE LENGTN LAKES ELEY FOREST PRECIP SOILS MEAN
1 S090 292.0 6.3 31.5 1.8 1.230 35.0 40.0 3.5 3.783
2 5140 185.0 14.3 30.3 1.0 1.026 52.0 38.2 3.2 3.783
3 S180 282.0 &46.0 9.8 1.0 1.740 64.0 35.0 3.3 4.030
& 5200 298.0 20.1 37.3 1.0 1.600 30.0 36.5 3.3 &.044
5 5205 771.0 6.4 46.8 1.0 1.647 33.0 34.0 3.2 4.333
6 5260 114.0 35.8 17.5 1.0 1.383 30.0 3.0 3.0 3.751
7 S270 $2.2 29.9 17.6 1.0 1.489 28.0 33.0 3.0 2.637
8 5280 66.8 12.6 20.1 1.0 1.305 41.0 33.6 3.0 3.186
9 S305 .5 45.2 13.9 1.0 1.123 27.0 34.6 3.0 3.348
10 S320 215.0 1.7 27.5% 1.1 966 57.0 35.5 3.0 3.995
11 $340 343.0 21.3 36.7 3.5 1.370 54.0 42.0 3.3 4.122
12 SIS 15.7 291.0 5.6 1.0 1.350 81.0 40.0 3.5 2.722
13 S380 43.8 52.2 22.1 1.0 1.300 85.0 43.0 3.5 3.078
1% S3%0 274.0 39.6 32.3 1.6 1.200 70.0 43.0 2.8 3.930
15 S44S 136.0 37.4 22.7 1.0 1.800 94.0 43.0 4.9 3.590
16 5485 604.0 22.8 &4.5 1.0 1.900 83.0 37.0 3.2 4.092
17 5495 37.7 54.8 15.2 1.0 1.350 67.0 37.8 3.2 3.284
18 $500 173.0 5.7 26.2 1.0 1.700 65.0 39.0 3.0 3.816
19 S520 &43.0 26.4 56.0 1.3 1.600 89.0 &4.0 3.2 4.275
20 5525 3.8 15.7 10.0 1.0 1.800 80.0 47.0 6.3 3.249
STATIST F_DATA
STANDARD
VARIABLE AVERAGE VARIANCE DEVIATION
AREA 2.1488 2249 4743
SLOPE 1.5105 . 1255 3542
LENGTH 1.3832 .0550 2345
STORAGE 0540 0171 .1308
ELEV 1.4339 .0707 2659
FOREST 1.7293 .0353 1879
PRECIP 1.5845 .0020 .0hbs
SOILS .5230 .0034 0581
KEAN 3.6524 2455 4955 DEPEMDENT VARIABLE
A RELAT FF NT!
VARTABLE AREA SLOPE LENGTH LAKES ELEY FOREST PRECIP SOILS MEAN
AREA 1.0000 -.6327 9304 2749 .0000 .0000 .0000 .0000 9159
SLOPE -.6327 1.0000 - T64 -.1318 L1187 3635 . 1867 .2053 -.4521
LENGTN 9304 - T4 1.0000 2345 .0000 .0000 .0000 -.1096 .8263
STORAGE 2T49 -.1318 2348 1.0000 .0000 .0000 2812 .0000 2596
ELEV .0000 1187 .0000 .0000 1.0000 2™ .0000 5297 .0000
FOREST . 0000 .3635 .0000 .0000 - 2™ 1.0000 A877 4304 .0000
PRECIP .0000 . 1887 .0000 2812 .0000 6877 1.0000 5412 .0000
SOILS .0000 .2053 -. 1096 .0000 5297 4304 5412 1.0000 .0000
MEAN 9159 - .4521 8263 2596 .0000 .0000 .0000 .0000 1.0000
RY OF R Ul F
ADJUSTED STANDARD  MEAN
REGRESSION . . . . . . . . . . REGRESSION COEFFICIENT . . . . . . . . . . DETERMINATION ERROR OF SQUARE
CONSTANT AREA SLOPE LENGTH  LAKES ELEV FOREST PRECIP  SOILS COEFFICIENT ESTIMATE  ERROR
—(l0G) (L0G) (LOG) (LOG) (WONE) (L0G)  (LOG) (L0G)
-1.522 1.261 0.182 -0.328 -0.272 -0.184 0.055 1.739 0.140 0.8097 0.2162 0.0257
-1.633 1.269 0.169 -0.364 -0.209 -0.169 0.054 1.874 ----- 0.8254 0.2070 0.0257
-1.808 1.267 0.179 -0.350 -0.30% -0.185 ----- 2.0 ----- 0.8386 0.1990 0.0258
-1.668 1.130 0.283 ----- -0.251 -0.167 ~----- 1.753  ~»=e- 0.8469 0.1939 0.0263
-1.130  1.106 0.250 ~<vcvs  cvece 0,129 o= 1,399 ceeoe 0.8537 0.1896 0.0269
1,034 1.069 O0.198 cccce  ccens  ccwen meses 1319 -ee-- 0.8584 0.1865 0.0278
~1.136 0975 cccee ceaes ecces  esass  seces 1.699 -c--- 0.8553 0.1885 0.0302
1.58 0.962 ----- sseee  seome  sees.  -eses ceces  ceooe 0.8390 0.1988 0.0356

Figure 9-4. Regression Analysis for Regional Frequency Computations.
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REGIONAL ANALYSTS WITH REGRESSION ON DRATNAGE AREA ONLY
MAP YEARS OF STANDARD
0BS NO STATION OBSERVED COMPUTED ERRCR VALUE DIFF  DIFF RECORD  DEVIATION Sy
1 5090 3.783 3,957  -0.174 -0.18  0.006 0.000036 43 0.180 0.029
2 5140 3.783 3.766  0.017 0.01  0.007 0.000049 52 0.195 0.027
3 5180 4.030 3.842  0.088 0.09 -0.002 0,000004 39 0.289 0.046
4 5200 4.044 3.965 0.079 0.07  0.009 0,000081 27 0.256 0.049
5 5205 4.333 4,362 -0.029 0.08 -0.108 0.011881 50 0.251 0.035
6 5260 3.751 3.564  0.187 0.11  0.077 0.005929 3s 0.293 0.050
7 5270 2.637 3.238  -0.601 -0.22 -0.381 0.145161 31 0.206 0.037
8 5280 3.186 3.341  -0.155 -0.17  0.015 0.000225 45 0.186 0.028
9 5305 3.348 3.403 -0.055 -0.04 -0.015 0.000225 “ 0.128 0.019
10 5320 3.985 3.829  0.166 0.16  0.006 0.000036 66 0.288 0.035
11 5340 4.122 4.070  0.052 0.02  0.032 0.00102¢ 66 0.227 C.028
12 5315 2.722 2.736 -0.014 -0.05  0.036 0.001206 40 0.323 0.051
13 5380 3.078 3.164 -0.086 -0.08 -0.006 0.000036 60 0.226 0.028
14 5390 3.830 3.830  0.000 0.00  0.000 0.000000 41 0.261 0.041
15 544S 3.590 3.638 -0.048 -0.15  0.102 0.010404 39 0.278 0.045
16 5485 4.082 4.260 -0.168 -0.08 ~-0.088 0.007744 61 0.262 0.031
17 5495 3.284 3,102 0.182 0.04  0.1642 0.020164 39 0.262 0.039
18 5500 3.816 3.738  0.078 0.08 ~-0.002 0.000004 66 0.237 0.029
19 5520 4.275 4.131  0.144 0.17 -0.026 0.000676 54 0.277 0.038
20 §525 3.249 2.810 0.3239 0.20 0.139 0.018321 39 0.291 0.047
Sum 0.06 -0.058 0.224296

Average 0.003 -0.003 0.0112

Figure 9-5. Regional Analysis Computations for Mapping Errors.

Figure 9-6. Regional Map of Regression Errors.
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mmary of Procedure. A regional analysis of precipitation or flood-flow
frequencies is generally accomplished by performing the following steps:

(1) Select long-record base stations within the region as required for extension of
records at each of the short-record stations.

(2) Tabulate the maximum events of each station.

(3) Transform the data to logarithms and calculate X, S and, if appropriate, G
(Equations 3-1, 3-2 and 3-3) for each base station.

(4) Calculate X and S for each other station and for the corresponding values of the
base station, and calculate the correlation coefficient (Equation 3-16).

(5) Adjust all values of X and S by use of the base station, (Equations 3-17 and 3-
19). (If any base station is first adjusted by use of a longer-record base station, the
longer-record statistics should be used for all subsequent adjustments.)

(6) Select meteorological and drainage basin parameters that are expected to correlate
with X and S, and tabulate the values for each drainage basin or representative area.

(7) Calculate the regression equations relating X and S to the basin characteristics,
using procedures explained in Section 9-2, and compute the corresponding
determination coefficients.

(8) Eliminate variables in turn that contribute the least to the determination
coefficient, recomputing the determination coefficient each time, and select the
regression equation having the highest adjusted determination coefficient, or one
with fewer variables if the adjusted determination coefficient is nearly the same.

(9) Compute the regression errors for each station, plot on a suitable map, and draw
isopleths of the regression errors for the regression equations of X (see Figures 9-5
and 9-6 for an example) and S considering the standard error for each computed, or
adjusted, X and S. Note that an alternate procedure is to add the regression constant
to each error value and develop a map of this combined value. This procedure
eliminates the need to keep the regression constant in the regression equation as the
mapped value now includes the regression constant.

(10) A frequency curve can be computed for any ungaged basin in the area covered
within the mapped region by using the adopted regression equations and appropriate
map values to obtain X and S, and then using the procedures discussed in Section 3-2
to compute several points to define the frequency curve. (It may also be necessary to
develop regional (generalized) values of the skew coefficient if the Pearson type III
distribution is considered appropriate. The next section describes the necessary steps
to compute a generalized skew coefficient.)

. Generali kew rminations. Skew coefficients for use in hydrologic studies
should be based on regional studies. Values based on individual records are highly
unreliable. Figure 9-7 is a plot of skew coefficients sequentially recomputed after adding
the annual peak for the given year. Note that, after 1950, the skew coefficient was at a
at a minimum of about 0.5 in 1954 and maximum of about 1.9 in 1955, only one year
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apart. The procedures for developing generalized skew values are generally set forth in
Bulletin 17B (pages 10-15).

In summary, it is recommended that:
(1) the stations used in the study have 25 or more years of data,

(2) at least 40 stations be used in the analysis, or at least all stations surrounding the
area within 100 miles should be included,

(3) the skew values should be plotted at the centroid of the basins to determine if
any geographic or topographic trends are present,

(4) a prediction equation should be developed to relate the computed skew
coefficients to watershed and climate variables,

(5) the arithmetic mean of at least 20 stations, if possible, in an area of reasonably
homogeneous hydrology should be computed, and

(6) then select the method that provides the most accurate estimation of the skew
coefficient (smallest mean-square error).

In addition to the above guidelines, care should be taken to select stations without
significant man-made changes such as reservoirs, urbanization, etc.
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Figure 9-7. Annual Peaks and Sequential Computed Skew by Year.
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CHAPTER 10
ANALYSIS OF MIXED POPULATIONS

10-1. Definition. The term mixed population, in a hydrologic context, is applied to data
that results from two or more different, but independent, causative conditions. For
example, floods originating in a mountainous area or the northern part of the United
States at a given site could be caused by melting snow or by rain storms. Along the Gulf
and Atlantic coasts, floods can be caused by general cyclonic storms or by intense tropical
storms. A frequency curve representing the events caused by one of the climatic
conditions may have a significantly different slope (standard deviation) than for the other
condition. A frequency plot of the annual events, irrespective of cause, may show a
rather sudden change in slope and the computed skew coefficient may be comparatively
high. In these situations, a frequency curve derived by combining the frequency curves
of each population can result in a computed frequency relation more representative of the
observed events.

10-2. Procedure.

a. The largest annual event is selected for each causative condition. As Bulletin 17B
(46) cautions, "If the flood events that are believed to comprise two or more populations
cannot be identified and separated by an objective and hydrologically meaningful
criterion, the record shall be treated as coming from one population." Also, Bulletin 17B
states, "Separation by calendar periods in lieu of separation by events is not considered
hydrologically reasonable unless the events in the separated periods are clearly caused by
different hydrometeorologic conditions.”

b. The frequency relations for each separate population can be derived by the
graphical or analytical techniques described in Chapter 2-and then combined to yield the
mixed population frequency curve. The individual annual frequency curves are combined
by "probability of union." For two curves, the equation is:

P, = P, +P,-P,P, (10-1)
where:
P. = Annual exceedance probability of combined populations for a selected
magnitude.
P, = Anpuall exceedance probability of same selected magnitude for population
series 1.

P, = Annual exceedance probability of same magnitude selected above for
population series 2.

c. Figure 10-1 illustrates a combined annual-event frequency curve derived by
combining a hurricane event frequency curve with a nonhurricane event curve for the
Susquehanna River at Harrisburg, PA. For more than two population series, n curves may
be more easily combined by the following form:
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P, = 1-(1-P) (I-P,)) ... (1-P,) (10-2)

c

NOTE: The exceedance probability (percent chance exceedance divided by 100) must be
used in the above equations.

d. If partial duration curves are to be added, the equation is simply P_= P, + P,
This assumes that the events in both series are hydrologically independent. When the
combined curve is used in an economic analysis, the events in both series must also be
economically independent.

10-3. Cautions.

a. If annual flood peaks have been separated by causative factors, a generalized skew
must be derived for each separate series to apply the log-Pearson Type III distribution as
recommended by Bulletin 17B. Plate 1 of Bulletin 17B or any other generalized skew map
based on the maximum annual event, irrespective of cause, will not be applicable to any
of the separated series. Derivation of generalized skew relations for each series can
involve much effort.

b. Some series may not have an event each year. For example, tropical storms do not
occur every year over most drainage areas in the United States, and quite often there are
only a few flood events for the series. Extensive regionalization may be necessary to
reduce the probable error in the frequency relations which results from small sample sizes.

c. Sometimes frequency relations of particular seasons are of interest, i.e., quarterly
or monthly, and the curves are combined to verify the annual series curve. The combined
curve will very likely fit the annual curve only in the middle parts of the curve. The
lower end of the curve will have a partial duration shape as many small events have been
included in the analysis. Also, it is possible that the slope of the frequency relation will
be higher at the upper end of the curve as the one season or month with the maximum
event included in its series will likely have a higher slope than that of the annual series.

d. A basic assumption of this procedure is that each series is independent of the
other. Coincidental frequency analysis techniques must be used where dependance is a
factor. For instance, the frequency curves of two or more tributary stations cannot be
combined by the above equation to derive the frequency curve of a downstream site. This
is because the downstream flow is a function of the summation of the coincident flows on
each of the tributaries.
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Figure 10-1. Nonhurricane, Hurricane, and Combined Flood Frequency Curves.
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CHAPTER 11
FREQUENCY OF COINCIDENT FLOWS
11-1. Introduction. In many cases of hydrologic design, it is necessary to consider

only those events which occur coincidentally with other events. For example, a pump
station is usually required to pump water only when interior runoff occurs at a time that
the main river stage is above interior ponding levels. In constructing a frequency curve of
interior runoff that occurs only at such times, data selected for direct use should be
limited to that recorded during high river stages. In some cases, such data might not be
adequate, but it is possibie in these cases where the two types of events are not highly
correlated to make indirect use of noncoincident data in order to establish a more reliable
frequency curve of coincident events.

11-2. A Procedure for Coincident Frequency Analysis.

a. Qbjective. Determine an exceedance-frequency relationship for a variable C.
Variable C is a function of two variables, A and B.

b. Selection of Dominant Variable. The variable that has the largest influence on

variable C is designated as variable A; the less influential variable is designated as variable
B. The significance of "influential” will be indicated by means of an example. Figure
11-1 shows water surface profiles along a tributary near the junction with a main river.
Stage on the tributary (variable C) is a function of main river stage and tributary
discharge. In Region I, main river stage, will tend to have the dominant influence on
tributary stage, whereas in Region II, tributary discharge will tend to dominate. The
boundary between Regions I and II cannot be precisely defined and will vary with
exceedance frequency. Stage-frequency determinations will be least accurate in the
vicinity of the boundary where both variables have a substantial impact on the combined
result.

¢. Procedure.

(1) Construct a duration curve for variable B. Discretize the duration curve with a
set of "index" values of B. Index values should represent approximately equal ranges
of magnitude of variable B. The area under the resulting discretized duration curve
should equal the area under the original duration curve. The number of index values
of B required for discretization depends on the range of variation of B and the
sensitivity of variable C to B. Therefore, the number of points selected should
adequately define the relationships.

(2) For each of the index values of variable B, develop a relationship between
variable A and the combined result C. In the illustration (Figure 11-1) the
relationship linking variables A, B and C would be obtained with a set of water
surface profile calculations for various combinations of main river stage and
tributary discharge.

(3) If variables A and B are independent of each other, construct an
exceedance-frequency curve of variable A, If the variables are not independent,
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construct a conditional exceedance-frequency curve of variable A for each index

value of variable B.

(4) Using the relationship developed in step (2) and frequency curve(s) developed in
step (3), construct a conditional exceedance-frequency curve of variable C for each

index value of variable B.

(5) For a selected magnitude of variable C

, multiply the exceedance-frequencies

from each curve developed in step (4) by the corresponding proportions of time
represented, and sum these products to obtain the exceedance-frequency of variable
C. Repeat this step for other selected magnitudes of C until a complete
exceedance-frequency curve for variable C is defined. This step is an application of

the total probability theorem.

d. Seasonal Effects. The duration of frequency curves from steps (1) and (3) are

assumed to represent stationary processes. That

is, it is assumed that probabilities and

exceedance frequencies obtained from the curves do not vary with time. In order for this
assumption to be reasonably valid, it is generally necessary to follow the above procedure
on a seasonal basis. Once seasonal exceedance-frequency curves have been obtained (step

e), they may be combined to obtain an all-seaso

n exceedance-frequency curve.

e. Assumption of Independence. Although step (3) enables application of the

procedure to situations where variables A and B are not independent, data is generally not
available to establish the conditional exceedance frequency curves required by that step.

Consequently, application of the procedure pres

ented here is generally limited to

situations where it is reasonable to assume that variables A and B are independent.
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Figure 11-1. Illustration of Water Surface Profiles in Coincident Frequency Analysis.
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CHAPTER 12
STOCHASTIC HYDROLOGY

12-1. Introduction.

a. A stochastic process is one in which there is a chance component in each
successive event and ordinarily some degree of correlation between successive events.
Modeling of a stochastic process involves the use of the "Monte Carlo” method of adding a
random (chance) component to a correlated component in order to construct each new
event. The correlated component can be related, not only to preceding events of the same
series, but also to concurrent and preceding events of series of related phenomena.

b. Work in stochastic hydrology has related primarily to annual and monthly
streamflows, but the results often apply to other hydrologic quantities such as
precipitation and temperatures. Some work on daily streamflow simulation has been done.

12-2. Applications.

a. Hydrologic records are usually shorter than 100 years in length, and most of them
are shorter than 25 years. Even in the case of the longest records, the most extreme
drought or flood event can be far different from the next most extreme event. There is
often serious question as to whether the extreme event is representative of the period of
record. The severity of a long drought can be changed drastically by adding or
subtracting 1 year of its duration. In order that some estimate of the likelihood of more
severe sequences can be made, the stochastic process can be simulated, and long sequences
of events can be generated. If the generation is done correctly, the hypothetical sequence
would have as equal likelihood of occurrence in the future as did the observed record.

b. The design of water resource projects is commonly based on assumed recurrence
of past hydrologic events. By generating a number of hydrologic sequences, each of a
specified desired length, it is possible to create a much broader base for hydrologic design.
While it is not possible to create information that is not already in the record, it is possible
to use the information more systematically and more effectively. In selecting the number
and length of hydrologic sequences to be generated, it is usually considered that 10 to 20
sequences would be adequate and that their length should correspond to the period of
project amortization.

¢. It must be recognized that the more hydrologic events that are generated, the
more chance there is that an extreme event or combination of events will be exceeded.
Consequently, it is not logical that a design be based on the most extreme generated event,
but rather on some consideration of the total consequences that would prevail for a given
design if all generated events should occur. The more events that are generated, the less
proportional weight each event is given. If a design is tested on 10 sequences of
hydrologic events, for example, the benefits and costs associated with each sequence
would be divided by 10 and added in order to obtain the "expected” net benefits.

12-3. Basic Procedure. Successful simulation of stochastic processes in hydrology has
been based generally on the concept of multiple linear regression, where the regression
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equation determines the correlated component, and the standard error of estimate
determines the random component. Figure 12-1 illustrates the general nature of the
process. In this case, a low degree of correlation is illustrated, in order to emphasize
important aspects of the process. It can be seen that, if every estimate of the dependent
variable is determined by the regression line (Figure 12-1a), the estimated points would be
perfectly correlated with the independent variable and would have a much smaller range
of magnitude than the actual observed values of the dependent variable. In order to avoid
such unreasonable results, it is necessary to add a random component to each estimate
(Figure 12-1b), and this random component should conform to the scatter of the observed

data about the regression line.

8.0

3.0 —

Dependert Varlable
o}
\\
(@]

0.0
0.0 1.0 2.0 3.0 4.0 5.0

independent Variable
Figure 12-1a. Data Estimation from Regression Line,.

8.0

(o} ] s

= g |

3.0 — —

s ©C4 ’/:Ldr// s ©
2.0

d/ o

i

0.0
0.0 1.0 2.0 s.0 4.0 8.0

independent Variable
Figure 12-1b. Data Estimation with Addition of Random Errors.

12-2



EM 1110-2-1415
S Mar 93

12-4. Monthly Streamflow Model.

a. In accordance with the above basic procedure, a simulation model for generating
values of a variable which can be defined only partially by a deterministic relation is:

Y = a+b,X,+b,X,+ZS,(1-R)* (12-1)
where:
Y = dependent variable
a = regression constant
b,,b, = regression coefficients

XX, = independent variables
Z = random number from normal standard population with zero mean and
unit variance

S, = standard deviation of dependent variable

R = mulitiple correlation coefficient

b. This type of simulation model can be used to generate related monthly streamflow
values at one or more stations. Multiple linear regression theory is based on the assumed
distribution of all variables in accordance with the Gaussian normal distribution.
Therefore, mathematical integrity requires that each variable be transformed to a normal
distribution, if it is not already normal. It has been found that the logarithms of
streamflows are approximately normally distributed in most cases. For computational
efficiency it is convenient to work with deviations from the mean which have been
normalized by dividing by the standard deviation. This deviate is sometimes called the
Pearson Type III deviate and can be computed as follows:

tp = (X; ;- X;)/8; (12-2)

where:

-
[}

Pearson Type III deviate
month number

-
H

= year number

= logarithm of flow

mean of flow logarithms

= standard deviation of flow logarithms

m><|><....
[}

12-3



EM 1110-2-1415
5 Mar 93

c. If these deviates exhibit a skewness, they can be further transformed, if
necessary, to a distribution very close to normal by use of the following approximate
Pearson Type III transform equation:

K; = (6/G;){l(G;t;/2) + 11 + 1} + G,/6 (12-3)
where:

K = normal standard deviate

i = month number

G = skew coefficient

t = Pearson Type III deviate as defined in Equation 12-2

An equation for generating monthly streamflow is:

Kix=BK; 1+ 8K 5+ ..+, Ky 1+ 8K
(12-4)
+ Byt Ki'-1,ko1’ + B, Ki’-1,n +Z; (1"Ri2,k)v'
where:
K = monthly flow logarithm, expressed as a normal standard deviate

B = beta coefficient, defined as b, .S, /S, where m is a station not equal to
k and b is the regression coefficient.

i = month number for value being generated
k = station number for value being generated
n = number of interrelated stations
R = multiple correlation coefficient

= random number from normal standard population
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For the case of a single station, this resolves to:

Ki = R iy K{ +Z;(I-R2; P (12-5)

1

d. Note that Equation 12-5 is very similar to Equation 12-1. The differences result
from using normal standard deviates. When this is done, the regression constant, a, equals
zero, the regression coefficients, b, become beta coefficients, 8, and the standard
deviation, S, does not appear in the random component since it equals 1. Note also that
one of the independent variables is the flow for the preceding month in order to preserve
the inherent serial correlation. The flow value in the original units is computed by
reversing the transformation process, i.e., from normal standard deviate to Pearson Type
II1 deviate, to logarithm of flow and finally flow value.

e. A step-by-step procedure for generating monthly streamflows for a number of
interrelated locations having simultaneous records is as follows:

(1) Compute the logarithm of each streamflow quantity. If a value of zero
streamflow is possible, it is necessary to add a small increment, such as 0.1
percent of the mean annual flow, to each monthly quantity before taking the
logarithm.

(2) Compute the mean, standard deviation and skew coefficient of the values
for each location and each month, using equations given in Chapter 2.

(3) For each month and location, subtract the mean from each event and divide
by the standard deviation (Equation 12-2).

(4) Transform these "standardized” quantities to a normal distribution by use of
Equation 12-3.

(5) Arrange the locations in any sequence, and compute a regression equation
for each location in turn for each month. In each case, the independent
variables will consist of concurrent monthly values at preceding stations and
preceding monthly values at the current and subsequent stations.

(6) Generate standardized variates for each location in turn for each month,
starting with the earliest month of generated data. This is accomplished by
computing a regression value and adding a random component. The random
component, according to Equation 12-5, is a random selection from a normal
distribution with zero mean and unit standard deviation, multiplied by the
alienation coefficient which is (1 - R€)™.

(7) Transform each generated value by reversing the transform of Equation 12-
3 with the appropriate skew coefficient, multiplying by the standard deviation
and adding to mean in order to obtain the logarithm of streamflow.

(8) Find the antilogarithm of the value determined in step (7) and subtract the
small increment added in step (1). If a negative value results, set it to zero.

12-5



EM 1110-2-1415
5 Mar 93

f. It is obviously not feasible to accomplish the above computations without the use
of an electronic computer. A computer program, HEC-4 Monthly Streamflow Simulation
(51) can be used for this purpose.

12-5. Data Fill In. Ordinarily, periods of recorded data at different locations do not
cover the same time span, and therefore, it is necessary to estimate missing values in order
to obtain a complete set of data for analysis as described above. In estimating the missing
values, it is important to preserve all statistical characteristics of the data, including
frequency and correlation characteristics. To preserve these characteristics, it is necessary
to estimate each individual value on the basis of multiple correlation with the preceding
value at that location and with the concurrent or preceding values in all other locations. A
random component is also required, as indicated in Equation 12-].

12-6. Application In Areas of Limited Data. The streamflow generation models discussed

so far have assumed that sufficient records were available to derive the appropriate
statistics. For instance, the monthly streamflow model requires four frequency and
correlation coefficients for each of the 12 months, or 48 values for one station simulation.
A model has been developed (51) that combines the coefficients into a few generalized
coefficients for the purpose of generating monthly streamflow at ungaged locations.
(Procedures for determining generalized statistics for use in generating daily flows have
not yet been developed.) The generalized model considers the following:

season of maximum runoff

- lag to season of minimum runoff

- average runoff

- variation between maximum and minimum runoff
- standard deviation of flows

interstation and serial correlations of flows

12-7. Daily Streamflow Model.

a. Generation of daily streamflows can be accomplished in a manner very similar to
the generation of monthly streamflow quantities. Although a computer program has been
prepared for this purpose, it is capable only of generating flows at a single location and
does not provide a totally satisfactory hydrograph. Since it is desired in many reservoir
operation studies to use a monthly interval most of the time, and to perform daily
operation computations for only a few critical periods, the program has been designed to
generate daily flows after the monthly total runoff has been generated by another
program. Flows for any particular day are correlated with flows for the preceding day
and for the second antecedent day.

b. A procedure that will give a reasonable shaped hydrograph, as well as coordinated
hydrographs at many locations in a basin, would consist of (1) stochastic generation of
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precipitation over the basin, and (2) using a precipitation-runoff mode! to derive the
resulting streamflow.

12-8. Reliability. While the simulation of stochastic processes can add reliability in
hydrologic design, the techniques have not yet developed to the stage that they are
completely dependable. All mathematical models are simplified representations of the
physical phenomena. In most applications, simplifying assumptions do not cause serious
discrepancies. It is important at this "state of the art,” however, to examine carefully the
results of hydrologic simulation to assure that they are reasonable in each case.
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