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Chapter 9
Route Surveying

9-1. General

Route surveys are most commonly used for levees, stream
channels, highways, railways, canals, power transmission
lines, pipelines, and other utilities. In general, route
surveys consist of :

• Determining ground configuration and the loca-
tion of objects within and along a proposed route.

• Establishing the alignment of the route.

• Determining volumes of earthwork required for
construction.

After the initial staking of the alignment has been closed
through a set of primary control points and adjustments
have been made, center-line/baseline stationing will iden-
tify all points established on the route. Differential levels
are established through the area from two benchmarks
previously established. Cross-sections in the past were
taken left and right of center-line. Today digital terrain
models (DTM) or photogrammetry is used to produce
cross-sections for design grades. Surveys may be con-
ducted to check these sections at intermittent stations
along the center-line. Ground elevations and features will
be recorded as required.

9-2. Horizontal Circular Curves

Route surveys often require layout of horizontal curves.
The point of curvature (PC), point of intersection (PI),
and point of tangency (PT) should be established on cen-
ter line, identified, and staked including offsets to the
center line. Figure 9-1 is a sketch of a horizontal curve.
The traverse routes through the curve will be included
into the closed traverse through two primary or secondary
control points for closure and adjustment. Field layout/
stakeout should be no more that 100 feet along the curve
on even stationing. Points of curvature, angle points,
and/or points of intersection should be referenced (line-of-
sight) outside the clearing limits or the construction area.

9-3. Deflection Angles

The angles formed between the back tangent and a line
from the PC to a point on the curve is the deflection
angle to the curve. The deflection to the point on the
curve is given by the equation:

Figure 9-1. Horizontal curve

∆ = arc length / radius

where

∆ = deflection angle or central angle

Arc length = the arc length found by subtracting the sta-
tion number

Radius= distance from the radius point to the center
line of the right-of-way alignment

Transportation engineers compute minimum/maximum
allowable curvature based on weight and speed. Survey-
ors fit curves to existing alignments based on the mini-
mum/maximum curvature limits. Curvature limits only
apply to primary roads. Secondary roads or roads where
speeds are low are based on radius and deflection angle.
Two types of formulas have been used to fit curves based
solely on curvature:
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Degree of Curvature - Arc Definition
Degree of Curvature - Chord Definition

9-4. Degree of Curve - Arc Definition

The standard 100-foot steel highway chain used by sur-
veyors was the basis of the amount of curvature devel-
oped in 100 feet of arc. The ratio of curvature over a
100-foot arc is equal to the total degrees in a circle over
the total arc length in a circle.

DC / 100 = 360o/(2 * π * R)

or

DC = 100’ arc * 1/R * 180/π

Usually the curvature will be specified. The surveyor
needs to solve for the radius. Rearranging the above
formula yields:

R = 5729.578 / DC

The computed radius and directions (azimuths or bear-
ings) of the straight portions of the right-of-way, called
tangents, are usually used to compute the curve in the
field.

9-5. Degree of Curve - Chord Definition

The chord definition was popular in the railroad industry.
Some USACE districts use this method. The definition is
valid because the curvature is slight in railroad curves and
the difference between 100 feet of arc and 100 feet of
chord cannot be measured with a steel chain to the nearest
0.01 foot. The formula for any chord is

Chord = 2 * R * sin(∆/2)

The method defines the amount of curvature found in a
100-foot chord. Substituting the value of 100 into the
standard chord formula and rearranging gives the Degree
of Curve - Chord Definition:

sin(DC/2) = 50 / R

where

50 = 100 / 2.

9-6. Curve Stakeouts

The first and most important point in a curve stakeout is
the PI of two tangent sections of a right-of-way. This
point is set in lieu of the radius because the radius may be
too far away from an instrument station for curves with
small curvature. All PI’s are normally set from a cross-
traverse which was designed to have stations close to
where the PI’s actually fall. The PI’s are set from the
traverse and checked for distance to the adjacent PI. If
the distances are correct the lines are cut out and the PI’s
are referenced. Backsights for the references are set out
of the construction areas as points on line (POL).
Because the PI is not on the curve the PI does not have a
center-line station number. The PI may have a station
number during preliminary reconnaissance of a major
transportation route. The PI stations are angle points with
deflection angles between straight sections (tangents).
Once the curves are determined, the entire center line is
restationed. The distance to the PI from the curve/tangent
intersection point is found from the tangent formula given
in paragraph 9-7.

9-7. Curve Formulas

a. Required parameters.Usually only two parame-
ters need be specified to totally lay off a curve. If the
project drawings contain station numbers, subtract the
station number of the PC from the PT station number
when using the Arc Definition. This gives the amount of
arc length. The radius or the intersection deflection angle
can be used for all other calculations.

tangent→ T = R * tan(∆/2)

chord → ch = 2 * R * sin(∆/2)

where

∆ = intersection deflection angle or the central angle
at the radius for the entire curve.

The relationship of arc to angular measurement can
always be used if the radius is known.

s = r * θ

where
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s = arc length

r = radius

θ = angle in radians, convert from degrees to radians
by π/180°

NOTE: If the angle is being used to compute the arc or
radius, the units must be in radians. Convert to radians
by multiplying degrees byπ/180°.

b. Relation between central angles and deflection
angles. The deflection angle measured at the PC between
the tangent and the line to the point is 1/2 the central
angle subtended between the PC and the point. The rela-
tionship comes directly from the geometry of a circle.

9-8. Transition Spirals

The initial factor to determine the transition spiral is the
velocity of the vehicle using the structure. Until further
guidance becomes available, the formula to be used for
determining the minimum length of the spiral will be the
highway definition:

LS = (1.6 * V3) / RC

where

Ls = the minimum length of the spiral

V = the design speed (mph)

Rc = radius of the circular curve

Figure 9-2 is a diagram of a spiral curve used for
transition.

∆S = (Ls * Dc)/200

where

s = central angle for the spiral

Ls = the length of the spiral used for the spiral design

Dc = degree of curve for the highway curve

The new circular curve will be reduced by

c = - (2 * s)

where

Figure 9-2. Spiral curve diagram

c = new central angle of the circular curve

= old central angle of the circular curve

s = central angle for one spiral

Many procedures exist for computing spiral curves. The
method recommended for use by USACE to compute
spirals where s is less than 15 degrees is
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where

X = distance from the tangent to spiral (TS) and PC
of the circular curve along the tangent.
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where

Y = distance from the tangent to the PC

Refer to Figure 9-2.

o = Y - R(1-cos( s))
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X0 = X - (R)(sin( s)

KG = (R)(tan( /2))

FV = (o)(tan( /2)

Ts = Xo + KG + FV

Ts = X - (R)(sin(∆s) + (R+o)(tan(∆c/2)

9-9. Spiral Stakeout

The point Ts is set from the PI on both tangents. From
this point forward, only one side of the spiral will be
discussed. The other side is the same. The distanceX,
measured from theTs is set as a POL. The instrument is
moved to the POL, backsighted along the tangent and the
perpendicular is turned to locate the horizontal curve
center line at a distanceY from the tangent line. The
deflection angles are computed by the formula

δS = (I S
2 / LS

2) * ∆S

The stakeout of a spiral is much the same as a horizontal
curve. The arc lengths in the spiral are assumed to be
equal to the chords provided chaining is done between
short stations. Fifty-foot stations are common. For an
example of a stakeout, assume theTs falls on station
164+68.21. Assume the∆s was 10 degrees, andLs is
300.00 feet. To set the first deflection angle with the
instrument located atTs, backsighting the PI, subtract out
the next even station. 165+00 - 164+68.21 = 31.79 feet
(pull 31.79 as the chained distance fromTs). The deflec-
tion angle is

δS = 31.792 / 3002

δS = 00o 02’ 15”

A curve (spiral) table is constructed until the last deflec-
tion computed before the PC. The deflection from theTs

to the PC is approximately∆s/3. No angle in the table
should exceed this value.

9-10. Vertical Curves

Vertical curves are not typically surveyed to a predeter-
mined design involving topographic surveys. Basically,
the same criteria apply for horizontal and vertical curves
in preliminary design project phases which are highly
dependent on topographic surveys. Two methods are
traditionally used to compute a vertical curve. These are
the direct equation method and the tangent offset method.

Both methods are discussed. USACE recommends use of
the equation method. The tangent offset method offers
insight to the calculation of slope and rate of change of
slope components to find the elevation on the vertical
curve.

9-11. Vertical Curve - Tangent Offset Method

Figure 9-3 shows a planview of a straight vertical curve.
Vertical curves can be applied to horizontal curves as
well. The tangent offsets are computed and algebraically
added to the slope elevation computed for the center-line
station plus. In Figure 9-3, the tangent offsets reduce all
the elevations computed along the tangent to an elevation
on the vertical curve. This will not always be the case.
Vertical curves have many shapes.

a. Two definitions are used for the tangent offset
method:

(1) The parabola is defined as the locus of points
equally distant from a point (focus) and a line (directrix).

(2) y = x2 is the reduced form of the parabola
equation.

b. An independent parabola is constructed from the
known slopes and the length of the curve. Elevations are
computed for the point of vertical curve (PVC) and the
point of vertical tangent (PVT) (see Figure 9-3, part b).
The average of these two elevations is the midpoint of the
elevation on the parabola’s axis of symmetry. This eleva-
tion is substituted for the parabola’s focus. The slope
intersection is substituted to be the intersection of the axis
of symmetry and the directrix (see Figure 9-3, part c).
The difference in elevation between the long chord mid-
point and the slope intersection is “d” (see Figure 9-3,
part b). A parabola is now constructed with no reference
to the actual route alignment until later.

c. Using definition (1), the maximum tangent offset
is found along the axis of symmetry between the vertex
and the directrix (see Figure 9-3, part c). By definition,
the value of this tangent offset is “d/2”.

d. The vertical distance or tangent offset to any
other point on the parabola varies as the square of the
horizontal distance from the curve beginning. Both ends
of the curve are used if the grades are not equal.

e. The minimum tangent offset distance is zero on
both ends of the parabola. A proportion can be
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Figure 9-3. Vertical curve geometry

established based on the maximum tangent offset which is
stationed at length divided by 2. Combining this with
definition (2) gives

∆y / (d/2) = x2 / (L/2)2

See Figure 9-3, partc.

9-12. Vertical Curve - Equation Method

The rate of change of slope in a vertical curve is fixed.
This constant is:

Slope Rate Equation

r = (g2 - g1) / L

where

r = rate of change of grade

g2 = is the grade opposite the PVC

g1 = is the grade adjacent the PVC

L = the length of the vertical curve

Normally the grades are entered into the equations as
percents and the lengths are reduced to stations. This
makes the rate of change in units of percent grade change
per station.

a. The slope at any point can be found from the
Slope Rate Equation as:

Slope Equation

g = rx + g1

At the PVC,x = 0 andg = g1.
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At the PVT, x = L andg = g2.

b. The Slope Equation is used to find stations of no
slope. These stations are either high points or low points
in the curve. If slopesg2 and g1 are equal, the point of
zero slope is on a vertical line with the slope intersection.
Otherwise the Slope Equation is used to locate the route
station as

rx + g1 = 0

x = -g1 / r

c. The elevation of any point along the vertical
curve can be obtained from the Slope Equation as

y = (r/2)x2 + g1x + Elev. of PVC

9-13. Vertical Curve Obstructions

Other criteria may impact the design of vertical curves.
Obstructions may be the controlling factor in vertical
curve design. USACE designs bridges over navigation
channels. Shipping commerce must be accommodated in
the waterways. A high water elevation in the same datum
units as the highway elevations, design shipping clear-
ance, and safety factor provide an obstruction elevation
used to compute the length of a vertical curve. Fig-
ure 9-4 shows a sketch of a vertical curve and an obstruc-
tion elevation “z” at a horizontal distance “s” along the
highway route from the slope intersection of two known
grades. The tangent offsets from both ends of the curve
to the elevation “z” are used to compute “L.”

h1 / (L/2 + s)2 = h2 / (L/2 - s)2

j =i + s * g1

Figure 9-4. Vertical curve obstruction

h1 = j - z

k = i + s * g2 NOTE: g2 is negative in the figure

h2 = k - z
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