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Chapter 4 
GPS Absolute Point Positioning Determination Concepts, Errors, and Accuracies  
 
 
4-1.  General 
 
As outlined in Chapter 2, the NAVSTAR GPS was originally conceived and designed to provide point 
positioning and velocity of a user with a single, usually low-cost, hand-held GPS receiver.  This is termed 
"absolute" point positioning, as distinguished from "relative" positioning when a second receiver is 
employed.  GPS absolute positioning is the most widely used military and commercial GPS positioning 
method for real-time navigation and location.  It is usually not sufficiently accurate for precise surveying, 
mapping, or hydrographic positioning uses--horizontal accuracies are typically only in the 10 to 30 m 
range.  However, there are numerous other Corps applications where absolute point positioning is 
sufficiently accurate: vessel/vehicle/personnel navigation, emergency operations, reconnaissance 
mapping, dredge disposal monitoring, etc.  This chapter discusses the general concepts of performing 
absolute point positioning, and some of the basic errors inherent in the process.    
 
 

 
Figure 4-1.  Point positioning range measurements from a passive hand-held GPS receiver 

 
 
4-2.  Absolute Point Positioning  
 
Absolute positioning involves the use of only a single passive receiver at the user's location to collect data 
from multiple satellites in order to determine the user's georeferenced position--see Figure 4-1.  GPS 
determination of a point position on the earth actually uses a technique common to terrestrial surveying 
called trilateration--i.e. electronic distance measurement resection.  The user's GPS receiver simply 
measures the distance (i.e. ranges) between the earth and the NAVSTAR GPS satellites.  The user's 



EM 1110-1-1003 
1 Jul 03 

4-2 

position is determined by the resected intersection of the observed ranges to the satellites.  At least 3 
satellite ranges are required to compute a 3-D position.  In actual practice, at least 4 satellite observations 
are required in order to resolve timing variations.  Adding more satellite ranges will provide redundancy 
(and more accuracy) in the position solution.  The resultant 3-D coordinate value is relative to the 
geocentric reference system.  The GPS receiver may be operated in a static or dynamic mode.  The 
accuracies obtained by GPS absolute positioning are dependent on the user's GPS receiver quality, 
location, and length of observation time, DOP, and many other factors.  Accuracies to less than a meter 
can be obtained from static, long-term absolute GPS measurements when special equipment and post-
processing techniques are employed.  Future GPS satellite modernization upgrades, enhanced code and 
carrier processing techniques, and other refinements are expected to significantly improve the accuracy of 
absolute positioning such that meter-level navigation accuracies may be available in real-time. 
 
4-3.  GPS Absolute Position Solution Process--Pseudoranging 
 
When a GPS user performs a navigation solution, only an approximate range, or "pseudorange," to 
selected satellites is measured.  In order for the GPS user to determine his precise location, the known 
range to the satellite and the position of those satellites must be known.  By pseudoranging, the GPS user 
measures an approximate distance between the GPS antenna and the satellite by correlation of a satellite-
transmitted code and a reference code created by the receiver.  This measurement does not contain 
corrections for synchronization errors between the clock of the satellite transmitter and that of the GPS 
receiver.  The distance the signal has traveled is equal to the velocity of the transmission multiplied by the 
elapsed time of transmission.  The signal velocity is affected by tropospheric and ionospheric conditions 
in the atmosphere.  Figure 4-2 illustrates this pseudoranging concept. 

 
 

Figure 4-2.  Pseudoranging technique 
 
 a.  The accuracy of the positioned point is a function of the range measurement accuracy and the 
geometry of the satellites, as reduced to spherical intersections with the earth's surface.  A description of 
the geometrical magnification of uncertainty in a GPS determined point position is termed "Dilution of 
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Precision" (DOP), which is discussed in a later section.  Repeated and redundant range observations will 
generally improve range accuracy.  However, the dilution of precision remains the same.  In a static mode 
(meaning the GPS receiver antenna stays stationary), range measurements to each satellite may be 
continuously remeasured over varying orbital locations of the satellites.  The varying satellite orbits cause 
varying positional intersection geometry.  In addition, simultaneous range observations to numerous 
satellites can be adjusted using weighting techniques based on the elevation and pseudorange 
measurement reliability. 
 
 b.  Four pseudorange observations are needed to resolve a GPS 3-D position.  (Only three 
pseudorange observations are needed for a 2-D location.)  In practice there are often more than four 
satellites within view.  A minimum of four satellite ranges are needed to resolve the clock biases 
contained in both the satellite and the ground-based receiver.  Thus, in solving for the X-Y-Z coordinates 
of a point, a fourth unknown (i.e. clock bias--∆t) must also be included in the solution.  The solution of 
the 3-D position of a point is simply the solution of four pseudorange observation equations containing 
four unknowns, i.e. X, Y, Z, and ∆t. 
 
 c.  A pseudorange observation is equal to the true range from the satellite to the user plus delays 
due to satellite/receiver clock biases and other effects. 
 
 R  =  p t  +  c (∆t )  +  d (Eq 4-1) 
where 

R  = observed pseudorange 
p t   = true range to satellite (unknown) 
c  = velocity of propagation 
∆t  = clock biases (receiver and satellite) 
d  = propagation delays due to atmospheric conditions 

 
Propagation delays (d) are usually estimated from atmospheric models. 
 
The true range " p t " is equal to the 3-D coordinate difference between the satellite and user. 
 
 p t   =  [ ( X s  -  X  u ) 2  +  ( Y s  -  Y  u ) 2  +  ( Z s  - Z u ) 2  ] ½   (Eq 4-2) 
 
where 
 

X s, Y s, Z s = known satellite geocentric coordinates from ephemeris data 
 

X u, Y u, Z u = unknown geocentric coordinates of the user which are to be determined. 
 
When four pseudoranges are observed, four equations are formed from Equations 4-1 and 4-2.  
 
  ( R 1 - c ∆t - d 1 ) 2  =  ( X 1s   - X u) 2 + (Y 1s - Y u ) 2 + ( Z 1s - Z u ) 2 (Eq 4-3) 
  ( R 2 - c ∆t - d 2 ) 2  =  ( X 2s   - X u) 2 + (Y 2s - Y u ) 2 + ( Z 2s - Z u ) 2 (Eq 4-4) 
 ( R 3 - c ∆t - d 3 ) 2  =  ( X 3s   - X u) 2 + (Y 3s - Y u ) 2 + ( Z 3s - Z u ) 2  (Eq 4-5) 
 ( R 4 - c ∆t - d 4 ) 2  =  ( X 4s   - X u) 2 + (Y 4s - Y u ) 2 + ( Z 4s - Z u ) 2 (Eq 4-6) 
 
In these equations, the only unknowns are X u, Y u, Z u, and ∆t.  Solving these four equations for the four 
unknowns at each GPS update yields the user's 3-D position coordinates--X u, Y u, Z u.  These geocentric 
coordinates can then be transformed to any user reference datum.  Adding more pseudorange observations 
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provides redundancy to the solution.  For instance, if seven satellites are simultaneously observed, seven 
equations are derived and still only four unknowns result. 
 
 d.  This solution quality is highly dependent on the accuracy of the known coordinates of each 
satellite (i.e. X s, Y s, and Z s), the accuracy with which the atmospheric delays " d " can be estimated 
through modeling, and the accuracy of the resolution of the actual time measurement process performed 
in a GPS receiver (clock synchronization, signal processing, signal noise, etc.).  As with any measurement 
process, repeated and long-term observations from a single point will enhance the overall positional 
reliability. 
 
4-4.  GPS Point Positioning Accuracies 
 
Determining the accuracy of a point position derived from GPS observations is a complex and highly 
variable process.  Any specified accuracy (or claimed accuracy) is subject to many qualifications and 
interpretations--see Global Positioning System Standard Positioning Service Performance Standard 
(DoD 2001).  This is due to the numerous components that make up the "error budget" of a GPS 
observation.  Thus, resultant horizontal positional accuracies for absolute point positioning typically range 
between 10 m and 30 m, and much larger for elevation measurements.  Some of the more significant 
components of the error budget include: 
 

• Receiver and antenna quality and type--signal processing characteristics 
• Receiver platform dynamics--static or dynamic  
• Reference frames--satellite and user 
• Geographic location of user--user latitude and longitude 
• Satellite configuration relative to user 
• Satellite characteristics--frequency stability and health 
• Satellite constellation and service availability 
• Satellite-User range determination accuracy 
• Atmospheric conditions--signal propagation delays in ionosphere and troposphere 
• Solar flux density--11-year solar cycle 
• Observation length 
• Multipath conditions at receiver 
• Receiver noise 
• Receiver mask angles 
• Position computation solution algorithms 

  
In general, there are two main components that determine the accuracy of a GPS position solution: 
 

• Geometric Dilution of Precision (GDOP) 
• User Equivalent Range Error (UERE)  

 
GDOP is the geometric effect of the spatial relationship of the satellites relative to the user.  In surveying 
terms, it is the "strength of figure" of the trilateration position computation.  GDOP varies rapidly with 
time since the satellites are moving.  UERE is the accuracy of the individual range measurement to each 
satellite.  UERE also varies between different satellites, atmospheric conditions, and receivers.  The 
absolute range accuracies obtainable from absolute GPS are largely dependent on which code (C/A or 
P-Code) is used to determine positions.  These range accuracies (UERE), when coupled with the 
geometrical relationships of the satellites during the position determination (GDOP), result in a 3-D 
confidence ellipsoid that depicts uncertainties in all three coordinates.  Given the continuously changing 
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satellite geometry, and other factors, GPS accuracy is time/location dependent.  Error propagation 
techniques are used to define nominal accuracy statistics for a GPS user.   
 
4-5.  Positional Accuracy Statistics--Root Mean Square 
 
Two-dimensional (2-D) horizontal GPS positional accuracies are normally estimated and reported using a 
root mean square (RMS) radial error statistic.  RMS error measures are approximations to error ellipses 
that are computed for measured points.  This RMS error statistic is related to (and derives from) the 
positional variance-covariance matrix, which is described more fully in Chapter 11.  RMS statistics can 
have varying confidence levels.  A 1-σ RMS error equates to the radius of a circle in which there is a 63% 
probability that the computed position is within this area.  A circle of twice this radius (i.e. 2-σ RMS or 
2DRMS) represents (approximately) a 98 percent positional probability circle.  This 97 percent 
probability circle, or 2DRMS, is a common positional accuracy statistic used by GPS manufacturers.  In 
some instances, a 3DRMS, or 99+ percent probability is used.  The Federal Geographic Data Committee 
(FGDC) and the Corps of Engineers require horizontal and vertical geospatial accuracies to be reported at 
the 95% RMS confidence level.  For all practical purposes, the 95% RMS and 2DRMS statistics are 
equivalent  (Note also that a RMS error statistic represents the radius of a circle and therefore is not 
preceded by a ± sign.) 
 
 a.  Probable error measures.  3-D GPS accuracy measurements are sometimes expressed by 
Spherical Error Probable, or SEP.  This measure represents the radius of a sphere with a 50% confidence 
or probability level.  This spheroid radial measure only approximates the actual 3-D ellipsoid representing 
the uncertainties in the geocentric coordinate system.  In 2-D horizontal positioning, a Circular Error 
Probable (CEP) statistic is commonly used, particular in military targeting.  CEP represents the radius of 
a circle containing a 50% probability of position confidence. 
 
 b.  Accuracy comparisons.  It is important that GPS accuracy measures clearly identify the 
statistic from which they are derived.  A "100-meter" or "3-meter" accuracy statistic is meaningless unless 
it is identified as being either 1-D, 2-D, or 3-D, along with the applicable probability or confidence level.  
For example, if a nominal SPS 2-D accuracy is specified as 7 meters CEP (i.e. 50%), then this equates to 
15 meters at the 95% 2-D confidence level, and roughly 13.5 meters SEP (3-D 50%).  See Table 4-1 for a 
comparison of the most commonly used error statistics.  In addition, absolute GPS point positioning 
accuracies are defined relative to an earth-centered coordinate system/datum--WGS 84.  This coordinate 
system may differ significantly from the user's local project or construction datum.  Thus, any position 
derived from GPS observations is dependent on the accuracy of the reference datum/frame relative to 
WGS 84.  Nominal GPS accuracies may also be published as design or tolerance limits and accuracies 
achieved can differ significantly from these values.  
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Table 4-1.  Representative Statistics used in Geospatial Positioning 
 

   Probability Relative Nominal SPS Point 
    Distance  Positioning Accuracy  
   Error Measurement Statistic  (%) (σ) (1 ) meters (2) 
 

LINEAR MEASURES   σN or σE σU 

 
Probable Error 50 0.6745 σ ± 4 m ± 9 m 
Average Error  57.51 0.7979 σ ± 5 m ± 11 m 
One-Sigma Standard Error/Deviation 68.27 1.00 σ ± 6.3 m ± 13.8 m 
90% Probability (Map Accuracy Standard) 90 1.645 σ ± 10 m ± 23 m 
95% Probability/Confidence                           (3) 95 1.96 σ ± 12 m ± 27 m 
2-Sigma Standard Error/Deviation 95.45 2.00 σ ± 12.6 m ± 27.7 m 
99% Probability/Confidence 99 2.576 σ ± 16 m ± 36 m 
3-Sigma Standard Error (Near Certainty) 99.73 3.00 σ ± 19 m ± 42 m 
 
 
TWO-DIMENSIONAL MEASURES     CIRCULAR RADIUS 
 
1-Sigma Standard Error Circle ( σc)                

(4) 39 1.00 σc 6 m  
Circular Error Probable (CEP)                      (5) 50 1.177 σc 7 m  
1 Deviation Root Mean Square (1DRMS)       (6) 63 1.414 σc 9 m  
Circular Map Accuracy Standard 90 2.146 σc 13 m  
95% 2-D Positional Confidence Circle         95 2.447 σc 15 m  
2-Dev. Root Mean Square Error (2DRMS)    (7) 98+ 2.83 σc 17.8 m  
99% 2-D Positional Confidence Circle 99 3.035 σc 19 m  
3.5 Sigma Circular Near-Certainty Error 99.78 3.5 σc 22 m  
3 Dev. Root Mean Square Error (3DRMS) 99.9+ 4.24 σc 27 m  
 
 
THREE-DIMENSIONAL MEASURES   SPHERICAL RADIUS  
 
1- σ Spherical Standard Error ( σs)                  

(8) 19.9 1.00 σs 9 m  
Spherical Error Probable (SEP)                    (9) 50 1.54 σs 13.5 m  
Mean Radial Spherical Error (MRSE)             (10) 61 1.73 σs 16 m  
90% Spherical Accuracy Standard 90 2.50 σs 22 m  
95% 3-D Confidence Spheroid 95 2.70 σs 24 m  
99% 3-D Confidence Spheroid 99 3.37 σs 30 m  
Spherical Near-Certainty Error 99.89 4.00 σs 35 m  

 
 
NOTES: 
 
MOST COMMONLY USED STATISTICS SHOWN IN BOLD 
ESTIMATES NOT APPLICABLE TO DIFFERENTIAL GPS POSITIONING 
CIRCULAR/SPHERICAL ERROR RADII DO NOT HAVE ± SIGNS 
 
Absolute positional accuracies are derived from GPS simulated user range errors/deviations and resultant geocentric 
coordinate (X-Y-Z) solution covariance matrix, as transformed to a local datum (N-E-U or φ-λ-h).  GPS accuracy will vary 
with GDOP, UERE, and other numerous factors at time(s) of observation.  The 3-D covariance matrix yields an error 
ellipsoid.  Transformed ellipsoidal dimensions given (i.e. σN- σE- σU) are only average values observed under nominal 
GDOP conditions.  Circular (2-D) and spherical (3-D) radial measures are only approximations to this ellipsoid, as are 
probability estimates. 
 
(Table 4-1 continued on next page) 
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Table 4-1.  Representative Statistics used in Geospatial Positioning (continued) 
 
(1) Valid for 2-D & 3-D only if σN = σE = σU.  (σmin/σmax) generally must be ≥ 0.2.  Relative distance used unless otherwise 
indicated.   
 
(2) Representative accuracy based on nominal (assumed) SPS 1-D accuracies shown in italics, and that σN ≈ σE. SPS 
may have significant short-term variations from these nominal values.  In table, σN = σE = 6.3 m and σU = 13.8 m. 
 
(3) FGDC reporting statistic for positions, elevations and depths, including USACE hydrographic survey position and 
depth measurement accuracy criteria. 
 
(4) σc ≈ 0.5 (σN + σE) -- approximates standard error ellipse 
 
(5) CEP ≈ 0.589 (σN + σE) ≈ 1.18 σc        
 
(6) 1DRMS ≈ (σN

2 + σE
2) 1/2 

 
(7) 2DRMS ≈ 2 (σN

2 + σE
2) 1/2     

 
(8) σs ≈ 0.333 (σN + σE + σU) 
 
(9) SEP ≈ 0.513 (σN + σE + σU)    
 
(10) MRSE ≈ (σN

2 + σE
2 + σU

2) 1/2 
   Source: Topographic Engineering Center 
 
 
 
4-6.  GPS Range Error Budget 
 
There are numerous sources of measurement error that influence GPS performance.  The sum of all 
systematic errors or biases contributing to the measurement error is referred to as range bias.  The 
observed GPS range, without removal of biases, is referred to as a biased range--i.e. the "pseudorange."  
Principal contributors to the final range error that also contribute to overall GPS error are ephemeris error, 
satellite clock and electronics inaccuracies, tropospheric and ionospheric refraction, atmospheric 
absorption, receiver noise, and multipath effects.  Other errors may include those that were deliberately 
induced by DoD before 2000--Selective Availability (S/A), and Anti-Spoofing (A/S).  In addition to these 
major errors, GPS also contains random observation errors, such as unexplainable and unpredictable time 
variation.  These errors are impossible to model and correct.  The following paragraphs discuss errors 
associated with absolute GPS positioning modes.  Many of these errors are either eliminated or 
significantly minimized when GPS is used in a differential mode.  This is due to the same errors being 
common to both receivers during simultaneous observing sessions.  For a more detailed analysis of these 
errors, consult (DoD 2001) or one of the technical references listed in Appendix A. 
 
 a.  Ephemeris errors and orbit perturbations.  Satellite ephemeris errors are errors in the 
prediction of a satellite position which may then be transmitted to the user in the satellite data message.  
Typically these errors are less than 8 m (95%).  Ephemeris errors are satellite dependent and very difficult 
to completely correct and compensate for because the many forces acting on the predicted orbit of a 
satellite are difficult to measure directly.  Because direct measurement of all forces acting on a satellite 
orbit is difficult, it is nearly impossible to accurately account or compensate for those error sources when 
modeling the orbit of a satellite.  Ephemeris errors produce equal error shifts in calculated absolute point 
positions.  More accurate satellite orbit data can be obtained at later periods for post-processing; however, 
this is not practical for real-time point positioning applications. 
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 b.  Clock stability.  GPS relies very heavily on accurate time measurements.  GPS satellites carry 
rubidium and cesium time standards that are usually accurate to 1 part in 10 12 and 1 part in 10 13, 
respectively, while most receiver clocks are actuated by a quartz standard accurate to 1 part in 10 8.  A 
time offset is the difference between the time as recorded by the satellite clock and that recorded by the 
receiver.  Range error observed by the user as the result of time offsets between the satellite and receiver 
clock is a linear relationship and can be approximated by the following formula: 
 
 R E  =  T O  .  c (Eq 4-7) 
where 

R E  = range error due to clock instability 
T O  = time offset 

  c  = speed of light 
 
 (1) The following example shows the calculation of the user equivalent range error (UERE) 
 
 T O =  1 microsecond (µs) = 10 -06 seconds (s) 
 c =  299,792,458 m/s 
 
From Equation 4-7: 
 
 R E =  (10 -06 s) * 299,792,458 m/s  = 299.79 m  =  300 m  
 
 (2) In general, unpredictable transient situations that produce high-order departures in clock time 
can be ignored over short periods of time.  Even though this may be the case, predictable time drift of the 
satellite clocks is closely monitored by the ground control stations.  Through closely monitoring the time 
drift, the ground control stations are able to determine second-order polynomials which accurately model 
the time drift.  The second-order polynomial determined by the ground control station to model the time 
drift is included in the broadcast message in an effort to keep this drift to within 1 millisecond (ms).  The 
time synchronization between the GPS satellite clocks is kept to within 20 nanoseconds (ns) through the 
broadcast clock corrections as determined by the ground control stations and the synchronization of GPS 
standard time to the Universal Time Coordinated (UTC) to within 100 ns.  Random time drifts are 
unpredictable, thereby making them impossible to model. 
 
 (3) GPS receiver clock errors can be modeled in a similar manner to GPS satellite clock errors.  
In addition to modeling the satellite clock errors and in an effort to remove them, an additional satellite 
should be observed during operation to simply solve for an extra clock offset parameter along with the 
required coordinate parameters.  This procedure is based on the assumption that the clock bias is 
independent at each measurement epoch.  Rigorous estimation of the clock terms is more important for 
point positioning than for differential positioning.  Many of the clock terms cancel when the position 
equations are formed from the observations during a differential survey session. 
 
 c.  Ionospheric delays.  GPS signals are electromagnetic signals and as such are nonlinearly 
dispersed and refracted when transmitted through a highly charged environment like the ionosphere--
Figure 4-3.  Dispersion and refraction of the GPS signal is referred to as an ionospheric range effect 
because dispersion and refraction of the signal results in an error in the GPS range value.  Ionospheric 
range effects are frequency dependent. 
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Figure 4-3.  Atmospheric delays in received GPS signals 

 
 (1) The error effect of ionosphere refraction on the GPS range values is dependent on sunspot 
activity, time of day, and satellite geometry.  Ionospheric delay can vary from 40-60 m during the day and 
6-12 m at night.  GPS operations conducted during periods of high sunspot activity or with satellites near 
the horizon produce range results with the most error.  GPS operations conducted during periods of low 
sunspot activity, during the night, or with a satellite near the zenith produce range results with the least 
amount of ionospheric error. 
 
 (2) Resolution of ionospheric refraction can be accomplished by use of a dual-frequency receiver 
(a receiver that can simultaneously record both L1 and L2 frequency measurements).  During a period of 
uninterrupted observation of the L1 and L2 signals, these signals can be continuously counted and 
differenced, and the ionospheric delay uncertainty can be reduced to less than 5 m.  The resultant 
difference reflects the variable effects of the ionosphere delay on the GPS signal.  Single-frequency 
receivers used in an absolute and differential positioning mode typically rely on ionospheric models that 
model the effects of the ionosphere.  Recent efforts have shown that significant ionospheric delay removal 
can be achieved using dual-frequency receivers. 
 
 d.  Tropospheric delays.  GPS signals in the L-band level are not dispersed by the troposphere, 
but they are refracted due to moisture in the lower atmosphere.  The tropospheric conditions causing 
refraction of the GPS signal can be modeled by measuring the dry and wet components.  The dry 
component is best approximated by the following equation: 
 
 D C  =  ( 2.27  .  0.001 ) . P O   (Eq 4-8) 
where 

D C = dry term range contribution in zenith direction in meters 
P O = surface pressure in millibar (mb) 

 

Ionosphere
150 km

Troposphere
10 km
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 (1) The following example shows the calculation of average atmospheric pressure P O = 1013.243 
mb: 
 
From Equation 4-8:  
 
 D C =  (2.27 . 0.001) . 1013.243 mb 
 
  =  2.3 m, the dry term range error contribution in the zenith direction 
 
 (2) The wet component is considerably more difficult to approximate because its approximation 
is dependent not just on surface conditions, but also on the atmospheric conditions (water vapor content, 
temperature, altitude, and angle of the signal path above the horizon) along the entire GPS signal path.  
As this is the case, there has not been a well-correlated model that approximates the wet component. 
 
 e.  Multipath.  Multipath describes an error affecting positioning that occurs when the signal 
arrives at the receiver from more than one path--see Figure 4-4.  Multipath normally occurs near large 
reflective surfaces, such as a metal building or structure.  GPS signals received as a result of multipath 
give inaccurate GPS positions when processed.  With the newer receiver and antenna designs, and sound 
prior mission planning to reduce the possible causes of multipath, the effects of multipath as an error 
source can be minimized.  Averaging of GPS signals over a period of time (i.e. different satellite 
configurations) can also help to reduce the effects of multipath. 
 

 
Figure 4-4.  Multipath signals impacting GPS observations 

 
 f.  Receiver noise.  Receiver noise includes a variety of errors associated with the ability of the 
GPS receiver to measure a finite time difference.  These include signal processing, clock/signal 
synchronization and correlation methods, receiver resolution, signal noise, and others. 
 

Direct
Signals

Multipath Reflections
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 g.  Selective Availability (S/A) and Anti-Spoofing (A/S).  Before 2000, S/A was activated to 
purposely degrade the satellite signal to create position errors.  This is done by dithering the satellite clock 
and offsetting the satellite orbits.  Prior to 2000, the effects of S/A were eliminated by using differential 
techniques.  DoD always reserves the right to reimplement S/A should a major military conflict require 
this action for national security.  However, it is the stated intent of the US Government not to implement 
S/A globally but to develop regional GPS denial capabilities that will not impact GPS users globally.  A/S 
is implemented by interchanging the P code with a classified Y code.  This denies users who do not 
possess an authorized decryption device.  Manufactures of civil GPS equipment have developed methods 
such as squaring or cross correlation in order to make use of the P code when it is encrypted. 
 
4-7.  User Equivalent Range Error 
 
The previous sources of errors or biases are principal contributors to overall GPS range error.  There are 
many others in the total error budget model.  This total error budget is often summarized as the User 
Equivalent Range Error (UERE), or as User Range Error (URE).  To distinguish between the satellite-
dependent errors and that of the user's receiver, a Signal-in-Space (SIS) URE is defined by (DoD 2001).  
This SIS URE does not include the receiver's noise and multipath effects.  As mentioned previously, 
many of these range errors can be removed or at least effectively suppressed by developing models of 
their functional relationships in terms of various parameters that can be used as a corrective supplement 
for the basic GPS information.  Differential techniques also eliminate many of these errors.  Table 4-2 
lists the more significant error sources for a single-frequency receiver, as observed globally by DoD on 
the given date.  The resultant URE does not include multipath effects. 
 
 
Table 4-2.  Estimate of Standard Positioning System User Range Error 
  Single Frequency Receiver (8 June 2000) 
      
   
Error Source  User Range Error Contribution  
   (±  meters) 
 
Navigation Message Curve Fit 0.20 
Tropospheric Model  0.25 
C/A Code Phase Bias  0.27 
Orbit  0.57 
Receiver Noise  0.80 
Satellite Clock  1.43 
Ionospheric Model (global average) 7.00  1 
 
  URE (95%) ±  7.22 m 
1  Ionospheric model ranged from 1.30 m (best) to 7.00 m (worst) 
  
Source: Figure A-5-12, (DoD 2001) 
 
 
Globally, the URE for a single frequency ranged from 2.2 m to 14.6 m.  A dual-frequency receiver had a 
far more accurate URE: 1.4 m to 2.3 m, with a global average of 1.7 m.  If receiver multipath and other 
effects are added, say ± 2 to 4 m, then the UERE for a single-frequency receiver would be in the 10-15 m 
range.   
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4-8.  Satellite Geometry Effects on Accuracy--Geometrical Dilution of Precision   
 
The final positional accuracy of a point determined using absolute GPS survey techniques is directly 
related to the geometric strength of the configuration of satellites observed during the survey session.  
GPS errors resulting from satellite configuration geometry can be expressed in terms of GDOP.  In 
mathematical terms, GDOP is a scalar, dimensionless quantity used in an expression of a ratio of the 
positioning accuracy.  It is the ratio of the standard deviation of one coordinate to the measurement 
accuracy.  GDOP represents the geometrical contribution of a certain scalar factor to the uncertainty 
(i.e. standard deviation) of a GPS measurement.  GDOP values are a function of the diagonal elements of 
the covariance matrices of the adjusted parameters of the observed GPS signal and are used in the point 
formulations and determinations.    
 
 a.  In a more practical sense, GDOP is a scalar quantity of the contribution of the configuration of 
satellite constellation geometry to the GPS accuracy, in other words, a measure of the "strength" of the 
geometry of the satellite configuration.  In general, the more satellites that can be observed and used in 
the final solution, the better the solution.  Since GDOP can be used as a measure of the geometrical 
strength, it can also be used to selectively choose four satellites in a particular constellation that will 
provide the best solution.  Satellites spread around the horizon will provide the best horizontal position, 
but the weakest vertical elevation.  Conversely, if all satellites are at high altitudes, then the precision of 
the horizontal solution drops but the vertical improves.  This is illustrated in Figure 4-5.  The smaller the 
GDOP, the more accurate the position. 

 
 

Figure 4-5.  Satellite geometry and GDOP--"Good" GDOP and "Poor" GDOP configurations 
 
 b.  GDOP values used in absolute GPS positioning is a measure of spatial accuracy of a 3-D 
position and time.  The GDOP is constantly changing as the relative orientation and visibility of the 

SVs bunched together

SVs spread out through sky

Poor
GDOPGood

GDOP
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satellites change.  GDOP can be computed in the GPS receivers in real-time, and can be used as a quality 
control indicator.  GDOP is defined to be the square root of the sum of the variances of the position and 
time error estimates. 
   
 GDOP  =  [ σ E 

2
 +  σ N 

2  + σ U 
2
   +  σ R 

2
   +  ( c *  δ T ) 

2
 ] 0.5  .  [ 1 / σ R ] (Eq 4-9) 

where 
 

σ E  = standard deviation in east value, m 
σ N  = standard deviation in north value, m 
σ U = standard deviation in up direction, m 
c    = speed of light (299,338,582.7 m/s) 
δ T   = standard deviation in time, seconds 
σ R  = overall standard deviation in range in meters, i.e. the UERE at the one-sigma (68%) level 
 

The GDOP value is easily estimated by assuming the UEREs are all unity and then pulling the standard 
deviations directly from the variance-covariance matrix of the position adjustment.  Thus GDOP (and its 
derivations) can be recomputed at each position update (e.g., every second).  Large jumps (increases) in 
GDOP values are poor performance indicators, and typically occur as satellites are moved in and out of 
the solution.    
 
 c.  Positional dilution of precision (PDOP).  PDOP is a measure of the accuracy in 3-D position, 
mathematically defined as: 
  
 PDOP  =  [σ E 

2
 +  σ N 

2  + σ U 
2 ] 0.5  .  [ 1 / σ R ]  (Eq 4-10) 

 
where all variables are equivalent to those used in Equation 4-9.  PDOP is simply GDOP less the time 
bias. 
 
 (1) PDOP values are generally developed from satellite ephemerides prior to conducting a survey.  
When developed prior to a survey, PDOP can be used to determine the adequacy of a particular survey 
schedule. 
 
 (2) The key to understanding PDOP is to remember that it represents position recovery at an 
instant in time and is not representative of a whole session of time.  When using pseudorange techniques, 
PDOP values in the range of 4-5 are considered very good, while PDOP values greater than 10 are 
considered very poor.  For static surveys it is generally desirable to obtain GPS observations during a 
time of rapidly changing GDOP and/or PDOP. 
 
 (3) When the values of PDOP or GDOP are viewed over time, peak or high values (>10) can be 
associated with satellites in a constellation of poor geometry.  The higher the PDOP or GDOP, the poorer 
the solution for that instant in time.  This is critical in determining the acceptability of real-time 
navigation and photogrammetric solutions.  Poor geometry can be the result of satellites being in the same 
plane, orbiting near each other, or at similar elevations.   
 
 d.  Horizontal dilution of precision (HDOP).  HDOP is a measurement of the accuracy in 2-D 
horizontal position, mathematically defined as: 
 
 HDOP  =  [σ E 

2
 +  σ N 

2 ] 0.5  .  [ 1 / σ R ]  (Eq 4-11) 
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This HDOP statistic is most important in evaluating GPS surveys intended for densifying horizontal 
control in a project.  The HDOP is basically the RMS error determined from the final variance-covariance 
matrix divided by the standard error of the range measurements.  HDOP roughly indicates the effects of 
satellite range geometry on a resultant position. 
 
 e.  Vertical dilution of precision (VDOP).  VDOP is a measurement of the accuracy in standard 
deviation in vertical height, mathematically defined as: 
 
 VDOP  =  [σ U 

 ]   .  [ 1 / σ R ]  (Eq 4-12) 
 
 f.  Acceptable DOP values.  In general, GDOP and PDOP values should be less than 6 for a 
reliable solution.  Optimally, they should be less than 5.  GPS performance for HDOP is normally in the 
2 to 3 range.  VDOP is typically around 3 to 4.  Increases above these levels may indicate less accurate 
positioning.  In most cases, VDOP values will closely resemble PDOP values.  It is also desirable to have 
a GDOP/PDOP that changes during the time of GPS survey session.  The lower the GDOP/PDOP, the 
better the instantaneous point position solution is. 
 
4-9.  Resultant Positional Accuracy of Point Positioning 
 
The relationship between positional solution, the range error, and DOP can be expressed as follows 
(Leick, 1995): 
 
 Positional solution  ( σ )   =   σ R  .  DOP  (Eq 4-13) 
where 

σ   =  horizontal or vertical positional accuracy 
σ R  =  range error (95% UERE) 

 
For example, if the observed HDOP of a point position is displayed as 2.0 assuming unity a priori 
deviations, and the estimated 95% UERE is 4 m, then the estimated horizontal positional accuracy would 
be 8 m.  Since the UERE and HDOP (PDOP/HDOP/VDOP) values are so variable over short periods of 
time, there is little practical use in estimating a positional accuracy in this manner.  Positional accuracy is 
best estimated by statistically comparing continuous observations at some known reference point, 
typically over a 24-hour period, and computing the 95% deviations. 
 

a.  From actual DoD worldwide observations, the results of actual horizontal and vertical 
positional accuracies of single- and dual-frequency GPS point positioning observed on two different dates 
are summarized in Table 4-3 below. 
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Table 4-3.  GPS All-in-View Performance--95% 
 
      Single Frequency      Dual Frequency 
    
 Horizontal Vertical Horizontal Vertical 
   m  m   m  m 
 
 3 June 2000  1 
   Global average  8.3  16.8   3.1  5.6 
   Worst site  19.7  44.0   5.0  9.2 
 
8 June 2000  1 
   Global average  7.8  16.2   2.6  4.3 
   Worst site  19.2  39.3   4.2  7.1 
 
 
Predictable Accuracy  2 13  22   --  -- 
   Worst case  36  77 
 
 
Sources: 
 
1  Tables A-5-1 through A-5-4 (DoD 2001) 
 
2  2001 Federal Radionavigation Plan/Systems Predicted Accuracy (FRS Table 3-1--GPS System Characteristics) 
 
 
 
 

b.  Table 4-3 shows that single-frequency receivers are capable of achieving around 10 m (95%) 
positional accuracy and that the vertical component is significantly poorer.  The 2001 Federal 
Radionavigation Plan/System (FRP 2001) advertises a predictable SPS accuracy of 13 m (horizontal) and 
22 m (vertical), with a global service availability of 99%.  This predictable accuracy estimate does not 
include error contributions due to ionospheric contributions, tropospheric contributions, or receiver noise.  
There would be few applications for using GPS point positioning methods for elevation determination 
given the 20+ m error.  The results also clearly show the accuracy improvements when dual-frequency 
receivers are used.  There are many GIS database development applications where a horizontal accuracy 
in the 10 to 30 m range is sufficiently accurate; thus point positioning with a single- or dual-frequency 
receiver is a reliable, fast, and economical procedure for those applications.  These point positioning 
accuracy levels are obviously not suitable for USACE design and construction purposes; thus, relative or 
differential positioning techniques are required. 


