DECISION DOCUMENT NATIONWIDE PERMIT 24 This document discusses the factors considered by the Corps of Engineers (Corps) during the issuance process for this Nationwide Permit (NWP). This document contains: (1) the public interest review required by Corps regulations at 33 CFR 320.4(a)(1) and (2); and (2) a discussion of the environmental considerations necessary to comply with the National Environmental Policy Act. This evaluation of the NWP includes a discussion of compliance with applicable laws, consideration of public comments, an alternatives analysis, and a general assessment of individual and cumulative environmental effects, including the general potential effects on each of the public interest factors specified at 33 CFR 320.4(a). ### 1.0 Text of the Nationwide Permit <u>Indian Tribe or State Administered Section 404 Programs</u>. Any activity permitted by a state or Indian Tribe administering its own section 404 permit program pursuant to 33 U.S.C. 1344(g)-(l) is permitted pursuant to section 10 of the Rivers and Harbors Act of 1899. (<u>Authority</u>: Section 10) <u>Note 1</u>: As of the date of the promulgation of this NWP, only New Jersey and Michigan administer their own section 404 permit programs. <u>Note 2</u>: Those activities that do not involve an Indian Tribe or State section 404 permit are not included in this NWP, but certain structures will be exempted by Section 154 of Pub. L. 94-587, 90 Stat. 2917 (33 U.S.C. 591) (see 33 CFR 322.4(b)). ### 1.1 Requirements General conditions of the NWPs are in the <u>Federal Register</u> notice announcing the issuance of this NWP. Pre-construction notification requirements, additional conditions, limitations, and restrictions are in 33 CFR part 330. ## 1.2 Statutory Authority • Section 10 of the Rivers and Harbors Act of 1899 (33 U.S.C. 403) ## 1.3 Compliance with Related Laws (33 CFR 320.3) ### 1.3.1 General NWPs are a type of general permit designed to authorize certain activities that have no more than minimal individual and cumulative adverse environmental effects and generally comply with the related laws cited in 33 CFR 320.3. Activities that result in more than minimal individual and cumulative adverse environmental effects cannot be authorized by NWPs. Individual review of each activity authorized by an NWP will not normally be performed, except when pre-construction notification to the Corps is required or when an applicant requests verification that an activity complies with an NWP. Potential adverse impacts and compliance with the laws cited in 33 CFR 320.3 are controlled by the terms and conditions of each NWP, regional and case-specific conditions, and the review process that is undertaken prior to the issuance of NWPs. The evaluation of this NWP, and related documentation, considers compliance with each of the following laws, where applicable: Sections 401, 402, and 404 of the Clean Water Act; Section 307(c) of the Coastal Zone Management Act of 1972, as amended; Section 302 of the Marine Protection, Research and Sanctuaries Act of 1972, as amended; the National Environmental Policy Act of 1969; the Fish and Wildlife Act of 1956; the Migratory Marine Game-Fish Act; the Fish and Wildlife Coordination Act, the Federal Power Act of 1920, as amended; the National Historic Preservation Act of 1966; the Interstate Land Sales Full Disclosure Act; the Endangered Species Act; the Deepwater Port Act of 1974; the Marine Mammal Protection Act of 1972; Section 7(a) of the Wild and Scenic Rivers Act; the Ocean Thermal Energy Act of 1980; the National Fishing Enhancement Act of 1984; the Magnuson-Stevens Fishery and Conservation and Management Act, the Bald and Golden Eagle Protection Act; and the Migratory Bird Treaty Act. In addition, compliance of the NWP with other Federal requirements, such as Executive Orders and Federal regulations addressing issues such as floodplains, essential fish habitat, and critical resource waters is considered. ### 1.3.2 Terms and Conditions Many NWPs have pre-construction notification requirements that trigger case-by-case review of certain activities. Two NWP general conditions require case-by-case review of all activities that may adversely affect Federally-listed endangered or threatened species or historic properties (i.e., general conditions 18 and 20, respectively). General condition 16 restricts the use of NWPs for activities that are located in Federally-designated wild and scenic rivers. None of the NWPs authorize the construction of artificial reefs. General condition 28 prohibits the use of an NWP with other NWPs, except when the acreage loss of waters of the United States does not exceed the highest specified acreage limit of the NWPs used to authorize the single and complete project. In some cases, activities authorized by an NWP may require other federal, state, or local authorizations. Examples of such cases include, but are not limited to: activities that are in marine sanctuaries or affect marine sanctuaries or marine mammals; the ownership, construction, location, and operation of ocean thermal conversion facilities or deep water ports beyond the territorial seas; activities that result in discharges of dredged or fill material into waters of the United States and require Clean Water Act Section 401 water quality certification; or activities in a state operating under a coastal zone management program approved by the Secretary of Commerce under the Coastal Zone Management Act. In such cases, a provision of the NWPs states that an NWP does not obviate the need to obtain other authorizations required by law. [33 CFR 330.4(b)(2)] Additional safeguards include provisions that allow the Chief of Engineers, division engineers, and/or district engineers to: assert discretionary authority and require an individual permit for a specific activity; modify NWPs for specific activities by adding special conditions on a case-by-case basis; add conditions on a regional or nationwide basis to certain NWPs; or take action to suspend or revoke an NWP or NWP authorization for activities within a region or state. Regional conditions are imposed to protect important regional concerns and resources. [33 CFR 330.4(e) and 330.5] ### 1.3.3 Review Process The analyses in this document and the coordination that was undertaken prior to the issuance of the NWP fulfill the requirements of the National Environmental Policy Act (NEPA), the Fish and Wildlife Coordination Act, and other acts promulgated to protect the quality of the environment. All NWPs that authorize activities that may result in discharges into waters of the United States require water quality certification. NWPs that authorize activities within, or affecting land or water uses within a state that has a Federally-approved coastal zone management program, must also be certified as consistent with the state's program. The procedures to ensure that the NWPs comply with these laws are described in 33 CFR 330.4(c) and (d), respectively. ## 1.4 Public Comment and Response For a summary of the public comments received in response to the June 1, 2016, <u>Federal Register</u> notice, refer to the preamble in the <u>Federal Register</u> notice announcing the reissuance of this NWP. The substantive comments received in response to the June 1, 2016, <u>Federal Register</u> notice were used to improve the NWP by changing NWP terms and limits, pre-construction notification requirements, and/or NWP general conditions, as necessary. We did not propose any changes to this NWP. We did not receive any comments on this NWP. #### 2.0 Alternatives This evaluation includes an analysis of alternatives based on the requirements of NEPA. The alternatives discussed below are based on an analysis of the potential environmental impacts and impacts to the Corps, Federal and state resource agencies, general public, and prospective permittees. ### 2.1 No Action Alternative (No Nationwide Permit) The no action alternative would not achieve one of the goals of the Corps Nationwide Permit Program, which is to reduce the regulatory burden on applicants for activities that result in no more than minimal individual and cumulative adverse environmental effects. The no action alternative would also reduce the Corps ability to pursue the current level of review for other activities that have greater adverse effects on the aquatic environment, including activities that require individual permits as a result of the Corps exercising its discretionary authority under the NWP program. The no action alternative would also reduce the Corps ability to conduct compliance actions. If this NWP is not available, substantial additional resources would be required for the Corps to evaluate these minor activities through the individual permit process, and for the public and Federal, Tribal, and state resource agencies to review and comment on the large number of public notices for these activities. In a considerable majority of cases, when the Corps publishes public notices for proposed activities that result in no more than minimal adverse environmental effects, the Corps typically does not receive responses to these public notices from either the public or Federal, Tribal, and state resource agencies. Another important benefit of the NWP program that would not be achieved through the no action alternative is the incentive for project proponents to design their projects so that those activities meet the terms and conditions of an NWP. The Corps believes the NWPs have significantly reduced adverse effects to the aquatic environment because most applicants modify their projects to comply with the NWPs and avoid the delays and costs typically associated with the individual permit process. In the absence of this NWP, Department of the Army (DA) authorization in the form of another general permit (i.e., regional or programmatic general permits, where available) or individual permits would be required. Corps district
offices may develop regional general permits if an NWP is not available, but this is an impractical and inefficient method for activities with no more than minimal individual and cumulative adverse environmental effects that are conducted across the Nation. Not all districts would develop these regional general permits for a variety of reasons. The regulated public, especially those companies that conduct activities in more than one Corps district, would be adversely affected by the widespread use of regional general permits because of the greater potential for lack of consistency and predictability in the authorization of similar activities with no more than minimal individual and cumulative adverse environmental effects. These companies would incur greater costs in their efforts to comply with different regional general permit requirements between Corps districts. Nevertheless, in some states Corps districts have issued programmatic general permits to take the place of this and other NWPs. However, this approach only works in states with regulatory programs comparable to the Corps Regulatory Program. ### 2.2 National Modification Alternatives Since the Corps Nationwide Permit program began in 1977, the Corps has continuously strived to develop NWPs that only authorize activities that result in no more than minimal individual and cumulative adverse environmental effects. Every five years the Corps reevaluates the NWPs during the reissuance process, and may modify an NWP to address concerns for the aquatic environment. Utilizing collected data and institutional knowledge concerning activities authorized by the Corps regulatory program, the Corps reevaluates the potential impacts of activities authorized by NWPs. The Corps also uses substantive public comments on proposed NWPs to assess the expected impacts. This NWP was developed to authorize section 10 activities that have no more than minimal individual and cumulative adverse environmental effects, in cases where section 404 authorization is also required, but the section 404 permit program is administered by a state or Indian Tribe. The Corps has considered modifying or adding NWP general conditions, as discussed in the preamble of the Federal Register notice announcing the issuance of this NWP. In the June 1, 2016, <u>Federal Register</u> notice, the Corps requested comments on the proposed reissuance of this NWP. The Corps did not propose any changes to this NWP. ### 2.3 Regional Modification Alternatives An important aspect for the NWPs is the emphasis on regional conditions to address differences in aquatic resource functions, services, and values across the nation. All Corps divisions and districts are expected to add regional conditions to the NWPs to enhance protection of the aquatic environment and address local concerns. Division engineers can also revoke an NWP if the use of that NWP results in more than minimal individual and cumulative adverse environmental effects, especially in high value or rare wetlands and other waters. When an NWP is issued or reissued by the Corps, division engineers issue supplemental decision documents that evaluate potential impacts of the NWP at a regional level, and include regional cumulative effects assessments. Corps divisions and districts also monitor and analyze the cumulative adverse effects of the NWPs, and if warranted, further restrict or prohibit the use of the NWPs to ensure that the NWPs do not authorize activities that result in more than minimal individual and cumulative adverse environmental effects. To the extent practicable, division and district engineers will use regulatory automated information systems and institutional knowledge about the typical adverse effects of activities authorized by NWPs, as well as substantive public comments, to assess the individual and cumulative adverse effects on the aquatic environment resulting from regulated activities. # 2.4 Case-specific On-site Alternatives Although the terms and conditions for this NWP have been established at the national level to authorize most activities that have no more than minimal individual and cumulative adverse environmental effects, division and district engineers have the authority to impose case-specific special conditions on NWP authorizations to ensure that the authorized activities will result in no more than minimal individual and cumulative adverse environmental effects. General condition 23 requires the permittee to minimize and avoid impacts to waters of the United States to the maximum extent practicable on the project site. Off-site alternatives cannot be considered for activities authorized by NWPs. During the evaluation of a preconstruction notification, the district engineer may determine that additional avoidance and minimization is practicable. The district engineer may also condition the NWP authorization to require compensatory mitigation to offset losses of waters of the United States and ensure that the net adverse environmental effects are no more than minimal. As another example, the NWP authorization can be conditioned to prohibit the permittee from conducting the activity during specific times of the year to protect spawning fish and shellfish. If the proposed activity will result in more than minimal adverse environmental effects, then the district engineer will exercise discretionary authority and require an individual permit. Discretionary authority can be asserted where there are concerns for the aquatic environment, including high value aquatic habitats. The individual permit review process requires a project-specific alternatives analysis, including the consideration of offsite alternatives, and a public interest review. ### 3.0 Affected Environment This environmental assessment is national in scope because the NWP may be used across the country, unless the NWP is revoked or suspended by a division or district engineer under the procedures in 33 CFR 330.5(c) and (d), respectively. The affected environment consists of terrestrial and aquatic ecosystems in the United States, as they have been directly and indirectly affected by past and present federal, non-federal, and private activities. The past and present activities include activities authorized by the various NWPs issued from 1977 to 2012, activities authorized by other types of Department of the Army (DA) permits, as well as other federal, tribal, state, and private activities that are not regulated by the Corps. Aquatic ecosystems are also influenced by past and present activities in uplands, because those land use/land cover changes in uplands and other activities in uplands have indirect effects on aquatic ecosystems (e.g., MEA 2005b, Reid 1993). Due to the large geographic scale of the affected environment (i.e., the entire United States), as well as the many past and present human activities that have shaped the affected environment, it is only practical to describe the affected environment in general terms. In addition, it is not possible to describe the environmental conditions for specific sites where the NWPs may be used to authorize eligible activities. The total land area in the United States is approximately 2,264,000,000 acres, and the total land area in the contiguous United States is approximately 1,894,000,000 acres (Nickerson et al. 2011). Land uses in 48 states of the contiguous United States as of 2007 is provided in Table 3.1 (Nickerson et al. 2011). Of the land area in the entire United States, approximately 60 percent (1,350,000,000 acres) is privately owned (Nickerson et al. 2011). In the contiguous United States, approximately 67 percent of the land is privately owned, 31 percent is held by the United States government, and two percent is owned by state or local governments (Dale et al. 2000). Developed non-federal lands comprise 4.4 percent of the total land area of the contiguous United States (Dale et al. 2000). Table 3.1. Major land uses in the United States (Nickerson et al. 2011). | Land Use | Acres | Percent of
Total | |-------------------------------|---------------|---------------------| | Agriculture | 1,161,000,000 | 51.3 | | Forest land | 544,000,000 | 24.0 | | Transportation use | 27,000,000 | 1.2 | | Recreation and wildlife areas | 252,000,000 | 11.1 | | National defense areas | 23,000,000 | 1.0 | | Urban land | 61,000,000 | 2.7 | | Miscellaneous use | 197,000,000 | 8.7 | | Total land area | 2,264,000,000 | 100.0 | ## 3.1 Quantity of Aquatic Ecosystems in the United States There are approximately 283.1 million acres of wetlands in the United States; 107.7 million acres are in the conterminous United States and the remaining 175.4 million acres are in Alaska (Mitsch and Hernandez 2013). Wetlands occupy less than 9 percent of the global land area (Zedler and Kercher 2005). According to Dahl (2011), wetlands and deepwater habitats cover approximately 8 percent of the land area in the conterminous United States. Rivers and streams comprise approximately 0.52 percent of the total land area of the continental United States (Butman and Raymond 2011). Therefore, the wetlands, streams, rivers, and other aquatic habitats that are potentially waters of the United States and subject to regulation by the Corps under Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act of 1899 comprise a minor proportion of the land area of the United States. The remaining land area of the United States (more than 92 percent, depending on the proportion of wetlands, streams, rivers, and other aquatic habitats that are subject to regulation under those two statutes) is outside the Corps regulatory authority. Dahl (1990) estimated that approximately 53 percent of the wetlands in the conterminous United States were lost in the 200-year period from the 1780s to 1980s, while Alaska lost less than one percent of its wetlands and Hawaii lost approximately 12 percent of its original wetland acreage. In the 1780s,
there were approximately 221 million acres of wetlands in the conterminous United States (Dahl 1990). California lost the largest percentage of its wetlands (91 percent), whereas Florida lost the largest acreage (9.3 million acres) (Dahl 1990). During that 200-year period, 22 states lost more than 50 percent of their wetland acreage, and 10 states have lost more than 70 percent of their original wetland acreage (Dahl 1990). Frayer et al. (1983) evaluated wetland status and trends in the United States during the period of the mid-1950s to the mid-1970s. During that 20-year period, approximately 7.9 million acres of wetlands (4.2 percent) were lost in the conterminous United States. Much of the loss of estuarine emergent wetlands was due to changes to estuarine subtidal deepwater habitat, and some loss of estuarine emergent wetlands was due to urban development. For palustrine vegetated wetlands, nearly all of the losses of those wetlands were due to agricultural activities (e.g., conversion to agricultural production). The U.S. Fish and Wildlife Service also examined the status and trends of wetlands in the United States during the period of the mid-1970s to the 1980s, and found that there was a net loss of more than 2.6 million acres of wetlands (2.5 percent) during that time period (Dahl and Johnson 1991). Freshwater wetlands comprised 98 percent of those wetland losses (Dahl and Johnson 1991). During that time period, losses of estuarine wetlands were estimated to be 71,000 acres, with most of that loss due to changes of emergent estuarine wetlands to open waters caused by shifting sediments (Dahl and Johnson 1991). Conversions of wetlands to agricultural use were responsible for 54 percent of the wetland losses, and conversion to other land uses resulted in the loss of 41 percent of wetlands (Dahl and Johnson 1991). Urban development was responsible for five percent of the wetland loss (Dahl and Johnson 1991). The annual rate of wetland loss has decreased substantially since the 1970s (Dahl 2011), when wetland regulation became more prevalent (Brinson and Malvárez 2002). Between 2004 and 2009, there was no statistically significant difference in wetland acreage in the conterminous United States (Dahl 2011). According to the 2011 wetland status and trends report, during the period of 2004 to 2009 urban development accounted for 11 percent of wetland losses (61,630 acres), rural development resulted in 12 percent of wetland losses (66,940 acres), silviculture accounted for 56 percent of wetland losses (307,340 acres), and wetland conversion to deepwater habitats caused 21 percent of the loss in wetland area (115,960 acres) (Dahl 2011). Some of the losses occurred to wetlands that are not subject to Clean Water Act jurisdiction and some losses are due to activities not regulated under Section 404 of the Clean Water Act, such as unregulated drainage activities, exempt forestry activities, or water withdrawals. From 2004 to 2009, approximately 100,020 acres of wetlands were gained as a result of wetland restoration and conservation programs on agricultural land (Dahl 2011). Another source of wetland gain is conversion of other uplands to wetlands, resulting in a gain of 389,600 acres during the period of 2004 to 2009 (Dahl 2011). Inventories of wetlands, streams, and other aquatic resources are incomplete because the techniques used for those studies cannot identify some of those resources (e.g., Dahl (2011) for wetlands; Meyer and Wallace (2001) for streams). Losses of vegetated estuarine wetlands due to the direct effects of human activities have decreased significantly due to the requirements of Section 404 of the Clean Water Act and other laws and regulations (Dahl 2011). During the period of 2004 to 2009, less than one percent of estuarine emergent wetlands were lost as a direct result of human activities, while other factors such as sea level rise, land subsidence, storm events, erosion, and other ocean processes caused substantial losses of estuarine wetlands (Dahl 2011). The indirect effects of other human activities, such as oil and gas development, water extraction, development of the upper portions of watersheds, and levees, have also resulted in coastal wetland losses (Dahl 2011). Eutrophication of coastal waters can also cause losses of emergent estuarine wetlands, through changes in growth patterns of marsh plants and decreases in the stability of the wetland substrate, which changes those marshes to mud flats (Deegan et al. 2012). The Emergency Wetlands Resources Act of 1986 (Public Law 99-645) requires the USFWS to submit wetland status and trends reports to Congress (Dahl 2011). The latest status and trends report, which covers the period of 2004 to 2009, is summarized in Table 3.2. The USFWS status and trends report only provides information on acreage of the various aquatic habitat categories and does not assess the quality or condition of those aquatic habitats (Dahl 2011). Table 3.2. Estimated aquatic resource acreages in the conterminous United States in 2009 (Dahl 2011). | Aquatic Habitat Category | Estimated Area in 2009 (acres) | | | |-------------------------------------|--------------------------------|--|--| | Marine intertidal | 227,800 | | | | Estuarine intertidal non-vegetated | 1,017,700 | | | | Estuarine intertidal vegetated | 4,539,700 | | | | All intertidal waters and wetlands | 5,785,200 | | | | Freshwater ponds | 6,709,300 | | | | Freshwater vegetated | 97,565,300 | | | | Freshwater emergent wetlands | 27,430,500 | | | | Freshwater shrub wetlands | 18,511,500 | | | | Freshwater forested wetlands | 51,623,300 | | | | All freshwater wetlands | 104,274,600 | | | | Lacustrine deepwater habitats | 16,859,600 | | | | Riverine deepwater habitats | 7,510,500 | | | | Estuarine subtidal habitats | 18,776,500 | | | | All wetlands and deepwater habitats | 153,206,400 | | | The acreage of lacustrine deepwater habitats does not include the open waters of Great Lakes (Dahl 2011). The Federal Geographic Data Committee has established the Cowardin system developed by the U.S. Fish and Wildlife Service (USFWS) (Cowardin et al. 1979) as the national standard for wetland mapping, monitoring, and data reporting (Dahl 2011) (see Federal Geographic Data Committee (2013)). The Cowardin system is a hierarchical system which describes various wetland and deepwater habitats, using structural characteristics such as vegetation, substrate, and water regime as defining characteristics. Wetlands are defined by plant communities, soils, or inundation or flooding frequency. Deepwater habitats are permanently flooded areas located below the wetland boundary. In rivers and lakes, deepwater habitats are usually more than two meters deep. The Cowardin et al. (1979) definition of "wetland" differs from the definition used by the Corps and U.S. EPA for the purposes of implementing Section 404 of the Clean Water Act. The Corps-U.S. EPA regulations defines wetlands as "those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas." [33 CFR 328.3(c)(4); 40 CFR 230.3(o)(3)(iv)] The Cowardin et al. (1979) requires only one factor (i.e., wetland vegetation, soils, hydrology) to be present for an area to be a wetland, while the Corps-U.S. EPA wetland definition requires all three factors to be present under normal circumstances (Tiner 1997b, Mitsch and Gosselink 2015). The NWI produced by applying the Cowardin et al. (1979) definition is the only national scale wetland inventory available. There is no national inventory of wetland acreage based on the Corps-U.S. EPA wetland definition at 33 CFR 328.3(c)(4). There are five major systems in the Cowardin classification scheme: marine, estuarine, riverine, lacustrine, and palustrine (Cowardin et al. 1979). The marine system consists of open ocean on the continental shelf and its high energy coastlines. The estuarine system consists of tidal deepwater habitats and adjacent tidal wetlands that are usually partially enclosed by land, but may have open connections to open ocean waters. The riverine system generally consists of all wetland and deepwater habitats located within a river channel. The lacustrine system generally consists of wetland and deepwater habitats located within a topographic depression or dammed river channel, with a total area greater than 20 acres. The palustrine system generally includes all non-tidal wetlands and wetlands located in tidal areas with salinities less than 0.5 parts per thousand; it also includes ponds less than 20 acres in size. Approximately 95 percent of wetlands in the conterminous United States are freshwater wetlands, and the remaining 5 percent are estuarine or marine wetlands (Dahl 2011). According to Hall et al. (1994), there are more than 204 million acres of wetlands and deepwater habitats in the State of Alaska, including approximately 174.7 million acres of wetlands. Wetlands and deepwater habitats comprise approximately 50.7 percent of the surface area in Alaska (Hall et al. 1994). The National Resources Inventory (NRI) is a statistical survey conducted by the Natural Resources Conservation Service (NRCS) (USDA 2015) of natural resources on non-federal land in the United States. The NRCS defines non-federal land as privately owned lands, tribal and trust lands, and lands under the control of local and state governments. Acreages of palustrine and estuarine wetlands and the land uses those wetlands are subjected to are summarized in Table 3.3. The 2012 NRI estimates that there are 111,220,800 acres of palustrine and estuarine wetlands on non-Federal land and water areas in the United States (USDA 2015). The 2012 NRI estimates that there are 49,518,700 acres of open waters
on non-Federal land in the United States, including lacustrine, riverine, and marine habitats, as well as estuarine deepwater habitats. Table 3.3. The 2012 National Resources Inventory acreages for palustrine and estuarine wetlands on non-federal land, by land cover/use category (USDA 2015). | National Resources Inventory Land Cover/Use Category | Area of Palustrine and
Estuarine Wetlands
(acres) | |--|---| | cropland, pastureland, and Conservation Reserve Program land | 17,800,000 | | forest land | 65,800,000 | | rangeland | 8,000,000 | | other rural land | 14,700,000 | | developed land | 1,400,000 | | water area | 3,600,000 | | Total | 111,300,000 | The land cover/use categories used by the 2012 NRI are defined below (USDA 2015). Croplands are areas used to produce crops grown for harvest. Pastureland is land managed for livestock grazing, through the production of introduced forage plants. Conservation Reserve Program land is under a Conservation Reserve Program contract. Forest land is comprised of at least 10 percent single stem woody plant species that will be at least 13 feet tall at maturity. Rangeland is land on which plant cover consists mostly of native grasses, herbaceous plants, or shrubs suitable for grazing or browsing, and introduced forage plant species. Other rural land consists of farmsteads and other farm structures, field windbreaks, marshland, and barren land. Developed land is comprised of large urban and built-up areas (i.e., urban and built-up areas 10 acres or more in size), small built-up areas (i.e., developed lands 0.25 to 10 acres in size), and rural transportation land (e.g., roads, railroads, and associated rights-of-way outside urban and built-up areas). Water areas are comprised of waterbodies and streams that are permanent open waters. The wetlands data from the Fish and Wildlife Service's Status and Trends study and the Natural Resources Conservation Service's National Resources Inventory should not be compared, because they use different methods and analyses to produce their results (Dahl 2011). Leopold, Wolman, and Miller (1964) estimated that there are approximately 3,250,000 miles of river and stream channels in the United States. This estimate is based on an analysis of 1:24,000 scale topographic maps. Their estimate does not include many small streams. Many small streams, especially headwater streams, are not mapped on 1:24,000 scale U.S. Geological Survey (USGS) topographic maps (Leopold 1994) or included in other inventories (Meyer and Wallace 2001), including the National Hydrography Dataset (Elmore et al. 2013). Many small streams and rivers are not identified through maps produced by aerial photography or satellite imagery because of inadequate image resolution or trees or other vegetation obscuring the visibility of those streams from above (Benstead and Leigh 2012). In a study of stream mapping in the southeastern United States, only 20 percent of the stream network was mapped on 1:24,000 scale topographic maps, and nearly none of the observed intermittent or ephemeral streams were indicated on those maps (Hansen 2001). Another study in Massachusetts showed that those types of topographic maps exclude over 27 percent of stream miles in a watershed (Brooks and Colburn 2011). For a 1:24,000 scale topographic map, the smallest tributary found by using 10-foot contour interval has a drainage area of 0.7 square mile and length of 1,500 feet, and smaller stream channels are common throughout the United States (Leopold 1994). Benstead and Leigh (2012) found that the density of stream channels (length of stream channels per unit area) identified by digital elevation models was three times greater than the drainage density calculated by using USGS maps. Elmore et al. (2013) made similar findings in watersheds in the mid-Atlantic, where they determined that the stream density was 2.5 times greater than the stream density calculated with the National Hydrography Dataset. Due to the difficulty in mapping small streams, there are no accurate estimates of the total number of river or stream miles in the conterminous United States that might be considered as "waters of the United States." The quantity of the Nation's aquatic resources presented by studies that estimate the length or number of stream channels (see above) or the acreage of wetlands (USFWS status and trends studies, National Wetland Inventory (NWI), and Natural Resources Inventory (NRI) are underestimates, because those inventories do not include many small wetlands and streams. The USFWS status and trends study does not include Alaska, Hawaii, or the territories. The underestimate of national wetland acreage by the USFWS status and trends study and the NWI is primarily the result of the minimum size of wetlands detected through remote sensing techniques and the difficulty of identifying certain wetland types through those remote sensing techniques. The remote sensing approaches used by the USFWS for its NWI maps and its status and trends reports result in errors of omission that exclude wetlands that are difficult to identify through photointerpretation (Tiner 1997a). These errors of omission are due to wetland type and the size of target mapping units (Tiner 1997a). Therefore, it is important to understand the limitations of the source data when describing the environmental baseline for wetlands using maps and studies produced by remote sensing, especially in terms of wetland quantity. Factors affecting the accuracy of wetland maps made by remote sensing include: the degree of difficulty in identifying a wetland, map scale, the quality and scale of the source information (e.g., aerial or satellite photos), the environmental conditions when the source information was obtained, the time of year source information was obtained, the mapping equipment, and the skills of the people producing the maps (Tiner 1999). The map scale usually affects the target mapping unit, which is the minimum wetland size that can be consistently mapped (Tiner 1997b). In general, wetland types that are difficult to identify through field investigations are likely to be underrepresented in maps made by remote sensing (Tiner 1999). Wetlands difficult to identify through remote sensing include forested wetlands, small wetlands, narrow wetlands, mowed wetlands, farmed wetlands, wetlands with hydrology at the drier end of the wetland hydrology continuum, and significantly drained wetlands (Tiner 1999). In the most recent wetland status and trends report published by the U.S. Fish and Wildlife Service, the target minimum wetland mapping unit was 1 acre, although some easily identified wetlands as small as 0.1 acre were identified in that effort (Dahl 2011). The National Wetland Inventory identifies wetlands regardless of their jurisdictional status under the Clean Water Act (Tiner 1997b). Activities authorized by NWPs will adversely affect a smaller proportion of the Nation's wetland base than indicated by the wetlands acreage estimates provided in the most recent status and trends report, or the NWI maps for a particular region. Not all wetlands, streams, and other types of aquatic resources are subject to federal jurisdiction under the Clean Water Act (Mitsch and Gosselink 2015). Two U.S. Supreme Court decisions have identified limits to Clean Water Act jurisdiction. In 2001, in *Solid Waste Agency of Northern Cook County v. Army Corps of Engineers* (531 U.S. 159) the U.S. Supreme Court held that the use of isolated, non-navigable, intrastate waters by migratory birds is not, by itself a sufficient basis for exercising federal regulatory authority under the Clean Water Act (see 80 FR 37056). In the Supreme Court's 2006 decision in *Rapanos* v. *United States*, (547 U.S. 715), one justice stated that waters and wetlands regulated under the Clean Water Act must have a "significant nexus" to downstream traditional navigable waters. Four justices (the plurality) concluded that Clean Water Act jurisdiction applies only to relatively permanent waters connected to traditional navigable waters and to wetlands that have a continuous surface connection to those relatively permanent waters. The remaining justices in *Rapanos* stated that Clean Water Act jurisdiction applies to waters and wetlands that meet either the significant nexus test or the Plurality's test. There are 94,133 miles of shoreline in the United States (NOAA 1975). Of that shoreline, 88,633 miles are tidal shoreline and 5,500 miles are shoreline along the Great Lakes and rivers that connect those lakes to the Atlantic Ocean. More recently, Gittman et al. (2015) estimated that there are 99,524 miles of tidal shoreline in the conterminous United States. ### 3.2 Quality of Aquatic Ecosystems in the United States The USFWS status and trends study does not assess the condition or quality of wetlands and deepwater habitats (Dahl 2011). Information on water quality in waters and wetlands, as well as the causes of water quality impairment, is collected by the U.S. EPA under Sections 305(b) and 303(d) of the Clean Water Act. Table 3.4 provides U.S. EPA's most recent national summary of water quality in the Nation's waters and wetlands. Table 3.4. National summary of water quality data (U.S. EPA 2015). | Category of water | Total
waters | Total waters assessed | Percent of
waters
assessed | Good
waters | Threatened waters | Impaired
waters | |-------------------|-----------------|-----------------------|----------------------------------|----------------|-------------------|--------------------| | Rivers and | 3,533,205 | 1,046,621 | 29.6 | 476,765 | 7,657 | 562,198 | | streams | miles | miles | 25.0 | miles | miles | miles | | Lakes, | 41,666,049 | 17,904,395 | 43.0 | 5,658,789 | 145,572 | 12,100,034 | | reservoirs and | acres | acres | | acres | acres |
acres | | ponds | | | | | | | | Bays and | 87,791 | 33,402 square | 38.0 | 7,291 | 0 square | 26,111 | | estuaries | square miles | miles | | square | miles | square miles | | | | | | miles | | | | Coastal | 58,618 miles | 8,162 | 13.9 | 900 miles | 0 miles | 7,262 | | shoreline | | miles | | | | miles | | Ocean and | 54,120 | 1,674 square | 3.1 | 616 square | 0 square | 1,058 square | | near coastal | square miles | miles | | miles | miles | miles | | waters | | | | | | | | Wetlands | 107,700,000 | 1,112,438 | 1.0 | 573,947 | 0 acres | 538,492 | | | acres | acres | | acres | | acres | | Great Lakes | 5,202 miles | 4,431 miles | 85.2 | 78 miles | 0 miles | 4,353 | | shoreline | | | | | | miles | | Great Lakes | 60,546 | 53,332 | 88.1 | 62 square | 0 square | 53,270 | | open waters | square miles | square miles | | miles | miles | square miles | Waters and wetlands classified by states as "good" meets all their designated uses. Waters classified as "threatened" currently support all of their designated uses, but if pollution control measures are not taken one or more of those uses may become impaired in the future. A water or wetland is classified by the state as "impaired" if any one of its designated uses is not met. The definitions of good, threatened, and impaired are applied by states to describe the quality of their waters (the above definitions were found in the metadata in U.S. EPA (2015)). Designated uses include the "protection and propagation of fish, shellfish and wildlife," "recreation in and on the water," the use of waters for "public water supplies, propagation of fish, shellfish, wildlife, recreation in and on the water," and "agricultural, industrial and other purposes including navigation." (40 CFR 130.3). These designated uses are assessed by states in a variety of ways, by examining various physical, chemical and biological characteristics, so it is not possible to use the categories of "good," "threatened," and "impaired" to infer the level of ecological functions and services these waters perform. According to the latest U.S. EPA national summary (U.S. EPA 2015), 54 percent of assessed rivers and streams, 68 percent of assessed lakes, reservoirs, and ponds, 78 percent of assessed bays and estuaries, 89 percent of assessed coastal shoreline, 63 percent of assessed ocean and near coastal waters, and 48 percent of assessed wetlands are impaired. For rivers and streams, 34 causes of impairment were identified, and the top 10 causes were pathogens, sediment, nutrients, mercury, organic enrichment/oxygen depletion, polychlorinated biphenyls, metals (other than mercury), temperature, habitat alterations, and flow alteration(s). The primary sources of impairment for the assessed rivers and streams were agriculture, unknown sources, atmospheric deposition, urban-related runoff/stormwater, hydromodification, municipal discharges/sewage, natural/wildlife, unspecified point source, habitat alterations not directly related to hydromodification, and resource extraction. Thirty-one causes of impairment were identified for bays and estuaries. The top 10 causes of impairment for these waters is: mercury, polychlorinated biphenyls, pathogens, organic enrichment/oxygen depletion, dioxins, other causes, fish consumption advisories, metals (other than mercury), noxious aquatic plants, and pesticides. For bays and estuaries, the top 10 sources of impairment were atmospheric deposition, unknown sources, municipal discharges/sewage, other sources, industrial, natural/wildlife, urban-related runoff/stormwater, spills/dumping, unspecified non-point sources, and agriculture. Coastal shorelines were impaired by 15 identified causes, the top 10 of which were: mercury, pathogens, organic enrichment/oxygen depletion, turbidity, pH/acidity/caustic conditions, nutrients, temperature, oil and grease, algal growth, and causes unknown/impaired biota. The top 10 sources of impairment of coastal shorelines are "unknown," atmospheric deposition, municipal discharges/sewage, urban-related runoff/ stormwater, hydromodification, unspecified non-point sources, agriculture, recreational boating and marinas, industrial, and spills/dumping. For wetlands, 26 causes of impairment were identified, and the top 10 causes were organic enrichment/oxygen depletion, mercury, pathogens, metals (excluding mercury), toxic inorganics, temperature, sediment, algal growth, flow alterations, and turbidity. The primary sources for wetland impairment were "unknown," agriculture, atmospheric deposition, industrial, municipal discharges/sewage, recreational boating and marinas, resource extraction, natural/wildlife, hydromodification, and unspecified point sources. Water quality standards are established by states, with review and approval by the U.S. EPA (see Section 303(c) of the Clean Water Act and the implementing regulations at 40 CFR part 131). Under Section 401 of the Clean Water Act States review proposed discharges to determine compliance with applicable water quality standards. Most causes and sources of impairment are not due to activities regulated under Section 404 of the Clean Water Act or Section 10 of the Rivers and Harbors Act of 1899. Inputs of sediments into aquatic ecosystems can result from erosion occurring within a watershed (Beechie et al. 2013, Gosselink and Lee 1989). As water moves through a watershed it carries sediments and pollutants to streams (e.g., Allan 2004, Dudgeon et al. 2005, Paul and Meyer 2001) and wetlands (e.g., Zedler and Kercher 2005, Wright et al. 2006). Non-point sources of pollution (i.e., pollutants carried in runoff from farms, roads, and urban areas) are largely uncontrolled (Brown and Froemke 2012) because the Clean Water Act only requires permits for point sources discharges of pollutants (i.e., discharges of dredged or fill material regulated under section 404 and point source discharges of other pollutants regulated under section 402). The indirect effects of changes in upland land use (which are highly likely not to be subject to federal control and responsibility, at least in terms of the Corps Regulatory Program), including the construction and expansion of upland developments, have substantial adverse effects on the quality (i.e. the ability to perform hydrologic, biogeochemical, and habitat functions) of jurisdictional waters and wetlands because those upland activities alter watershed-scale processes. Those watershed-scale processes include water movement and storage, erosion and sediment transport, and the transport of nutrients and other pollutants. Habitat alterations as a cause or source of impairment may be the result of activities regulated under section 404 and section 10 because they involve discharges of dredged or fill material into jurisdictional waters or structures or work in navigable waters, but habitat alterations may also occur as a result of activities not regulated under those two statutes, such as the removal of vegetation from upland riparian areas. Hydrologic modifications may or may not be regulated under section 404 or section 10, depending on whether those hydrologic modifications are the result of discharges of dredged or fill material into waters of the United States regulated under Section 404 of the Clean Water Act or structures or work in navigable waters of the United States regulated under Section 10 of the Rivers and Harbors Act of 1899. When states, tribes, or the U.S. EPA establish total daily maximum loads (TMDLs) for pollutants and other impairments for specific waters, there may be variations in how these TMDLs are defined (see 40 CFR part 130). As discussed below, many anthropogenic activities and natural processes affect the ability of jurisdictional waters and wetlands to perform ecological functions. Stream and river functions are affected by activities occurring in their watersheds, including the indirect effects of land uses changes (Beechie et al. 2013, Allan 2004, Paul and Meyer 2001). Booth at al. (2004) found riparian land use in residential areas also strongly affects stream condition because many landowners clear vegetation up to the edge of the stream bank. The removal of vegetation from upland riparian areas and other activities in those nonjurisdictional areas do not require DA authorization. Wetland functions are also affected by indirect effects of land use activities in the land area that drains to the wetland (Zedler and Kercher 2005, Wright et al. 2006). Human activities within a watershed or catchment that have direct or indirect adverse effects on rivers, streams, wetlands, and other aquatic ecosystems are not limited to discharges of dredged or fill material into waters of the United States or structures or work in a navigable waters. Human activities in uplands have substantial indirect effects on the structure and function of aquatic ecosystems, including streams and wetlands, and their ability to sustain populations of listed species. It is extremely difficult to distinguish between degradation of water quality caused by upland activities and degradation of water quality caused by the filling or alteration of wetlands (Gosselink and Lee 1989). Most causes and sources of impairment are not due to activities regulated under Section 404 of the Clean Water Act or Section 10 of the Rivers and Harbors Act of 1899. Habitat alterations as a cause or source of impairment may be the result of activities regulated under section 404 and section 10 because they involve discharges of dredged or fill material or structures or work in navigable waters, but habitat alterations may also occur as a result of activities not regulated under those two statutes, such as the removal of vegetation from upland riparian areas. Hydrologic modifications may or may not be regulated under section 404 or section 10. The U.S. Environmental Protection Agency (U.S. EPA) has undertaken the National Wetland Condition Assessment (NWCA), which is a statistical survey
of wetland condition in the United States (U.S. EPA 2016). The NWCA assesses the ambient conditions of wetlands at the national and regional scales. The national scale encompasses the conterminous United States. The regional scale consists of four aggregated ecoregions: Coastal Plains, Eastern Mountains and Upper Midwest, Interior Plains, and West. In May 2016, U.S. EPA issued a final report on the results of its 2011 NWCA (U.S. EPA 2016). The 2011 NWCA determined that, across the conterminous United States, 48 percent of wetland area (39.8 million acres) is in good condition, 20 percent of the wetland area (12.4 million acres) is in fair condition, and 32 percent (19.9 million acres) is in poor condition (U.S. EPA 2016). The 2011 NWCA also examined indicators of stress for the wetlands that were evaluated. The most prevalent physical stressors were vegetation removal, surface hardening via conversion to pavement or soil compaction, and ditching (U.S. EPA 2016). In terms of chemical stressors, most wetlands were subject to low exposure to heavy metals and soil phosphorous, but substantial percentages of wetland area in the West and Eastern Mountains and Upper Midwest ecoregions were found to have moderate stressor levels for heavy metals (U.S. EPA 2016). For soil phosphorous concentrations, stressor levels were high for 13 percent of the wetland area in the Eastern Mountains and Upper Midwest ecoregion (U.S. EPA 2016). Across the conterminous United States, for biological stressors indicated by non-native plants, 61 percent of the wetland area exhibited low stressor levels (U.S. EPA 2016). When examined on an ecoregion basis, the Eastern Mountains and Upper Midwest and Coastal Plains ecoregions had high percentages of wetland area with low nonnative plant stressor levels, but the West and Interior Plains ecoregions had small percentages of areas with low non-native plant stressor levels (U.S. EPA 2016). ### 3.3 Aquatic resource functions and services Functions are the physical, chemical, and biological processes that occur in ecosystems (33 CFR 332.2). Wetland functions occur through interactions of their physical, chemical, and biological features (Smith et al. 1995). Wetland functions depend on a number of factors, such as the movement of water through the wetland, landscape position, surrounding land uses, vegetation density within the wetland, geology, soils, water source, and wetland size (NRC 1995). In its evaluation of wetland compensatory mitigation in the Clean Water Act Section 404 permit program, the National Research Council (2001) recognized five general categories of wetland functions: - Hydrologic functions - Water quality improvement - Vegetation support - Habitat support for animals - Soil functions Hydrologic functions include short- and long-term water storage and the maintenance of wetland hydrology (NRC 1995). Water quality improvement functions encompass the transformation or cycling of nutrients, the retention, transformation, or removal of pollutants, and the retention of sediments (NRC 1995). Vegetation support functions include the maintenance of plant communities, which support various species of animals as well as economically important plants. Wetland soils support diverse communities of bacteria and fungi which are critical for biogeochemical processes, including nutrient cycling and pollutant removal and transformation (NRC 2001). Wetland soils also provide rooting media for plants, as well as nutrients and water for those plants. These various functions generally interact with each other, to influence overall wetland functioning, or ecological integrity (Smith et al. 1995; Fennessy et al. 2007). As discussed earlier in this report, the Corps regulations at 33 CFR 320.4(b) list wetland functions that are important for the public interest review during evaluations of applications for DA permits, and for the issuance of general permits. Not all wetlands perform the same functions, nor do they provide functions to the same degree (Smith et al. 1995). Therefore, it is necessary to account for individual and regional variation when evaluating wetlands and the functions and services they provide. The types and levels of functions performed by a wetland are dependent on its hydrologic regime, the plant species inhabiting the wetland, soil type, and the surrounding landscape, including the degree of human disturbance of the landscape (Smith et al. 1995). Streams also provide a variety of functions, which differ from wetland functions. Streams also provide hydrologic functions, nutrient cycling functions, food web support, and corridors for movement of aquatic organisms (Allan and Castillo 2007). When considering stream functions, the stream channel should not be examined in isolation. The riparian corridor next to the stream channel is an integral part of the stream ecosystem and has critical roles in stream functions (NRC 2002). Riparian areas provide many of the same general functions as wetlands (NRC 1995, 2002). Fischenich (2006) conducted a review of stream and riparian corridor functions, and through a committee, identified five broad categories of stream functions: - Stream system dynamics - Hydrologic balance - Sediment processes and character - Biological support - Chemical processes and landscape pathways Stream system dynamics refers to the processes that affect the development and maintenance of the stream channel and riparian area over time, as well as energy management by the stream and riparian area. Hydrologic balance includes surface water storage processes, the exchange of surface and subsurface water, and the movement of water through the stream corridor. Sediment processes and character functions relate to processes for establishing and maintaining stream substrate and structure. Biological support functions include the biological communities inhabiting streams and their riparian areas. Chemical processes and pathway functions influence water and soil quality, as well as the chemical processes and nutrient cycles that occur in streams and their riparian areas. Rivers and streams function perform functions to different degrees, depending on watershed condition, the severity of direct and indirect impacts to streams caused by human activities, and their interactions with other environmental components, such as their riparian areas (Allan 2004, Gergel et al. 2002). Ecosystem services are the benefits that humans derive from ecosystem functions (33 CFR 332.2). The Millennium Ecosystem Assessment (2005b) describes four categories of ecosystem services: provisioning services, regulating services, cultural services, and supporting services. For wetlands and open waters, provisioning services include the production of food (e.g., fish, fruits, game), fresh water storage, food and fiber production, production of chemicals that can be used for medicine and other purposes, and supporting genetic diversity for resistance to disease. Regulating services relating to open waters and wetlands consist of climate regulation, control of hydrologic flows, water quality through the removal, retention, and recovery of nutrients and pollutants, erosion control, mitigating natural hazards such as floods, and providing habitat for pollinators. Cultural services that come from wetlands and open waters include spiritual and religious values, recreational opportunities, aesthetics, and education. Wetlands and open waters contribute supporting services such as soil formation, sediment retention, and nutrient cycling. Examples of services provided by wetland functions include flood damage reduction, maintenance of populations of economically important fish and wildlife species, maintenance of water quality (NRC 1995, MEA 2005b) and the production of populations of wetland plant species that are economically important commodities, such as timber, fiber, and fuel (MEA 2005b). Wetlands can also provide important climate regulation and storm protection services (MEA 2005b). Stream functions also result in ecosystem services that benefit society. Streams and their riparian areas store water, which can reduce downstream flooding and subsequent flood damage (NRC 2002, MEA 2005b). These ecosystems also maintain populations of economically important fish, wildlife, and plant species, including valuable fisheries (MEA 2005b, NRC 2002). The nutrient cycling and pollutant removal functions help maintain or improve water quality for surface waters (NRC 2002, MEA 2005b). Streams and riparian areas also provide important recreational opportunities. Rivers and streams also provide water for agricultural, industrial, and residential use (MEA 2005b). Freshwater ecosystems provide services such as water for drinking, household uses, manufacturing, thermoelectric power generation, irrigation, and aquaculture; production of finfish, waterfowl, and shellfish; and non-extractive services, such as flood control, transportation, recreation (e.g., swimming and boating), pollution dilution, hydroelectric generation, wildlife habitat, soil fertilization, and enhancement of property values (Postel and Carpenter 1997). Marine ecosystems provide a number of ecosystem services, including fish production; materials cycling (e.g., nitrogen, carbon, oxygen, phosphorous, and sulfur); transformation, detoxification, and sequestration of pollutants and wastes produced by humans; support of ocean-based recreation, tourism, and retirement industries; and coastal land development and valuation, including aesthetics related to living near the ocean (Peterson and Lubchenco 1997). This NWP authorizes structures in navigable waters of the United States. These waters are included in the marine, estuarine, lacustrine, and riverine systems of the Cowardin et al. (1979) classification system. ### 4.0 Environmental Consequences #### 4.1 General Evaluation Criteria This document contains a general assessment of the foreseeable effects of the
individual activities authorized by this NWP, the anticipated cumulative effects of those activities, and the potential future losses of waters of the United States that are estimated to occur until the expiration date of the NWP. In the assessment of these individual and cumulative effects, the terms and limits of the NWP, pre-construction notification requirements, and the standard NWP general conditions are considered. The supplemental documentation provided by division engineers will address how regional conditions affect the individual and cumulative effects of the NWP. The following evaluation comprises the NEPA analysis and the public interest review specified in 33 CFR 320.4(a)(1) and (2). The issuance of an NWP is based on a general assessment of the effects on public interest and environmental factors that are likely to occur as a result of using this NWP to authorize activities in waters of the United States. As such, this assessment must be speculative or predictive in general terms. Since NWPs authorize activities across the nation, projects eligible for NWP authorization may be constructed in a wide variety of environmental settings. Therefore, it is difficult to predict all of the indirect impacts that may be associated with each activity authorized by an NWP. For example, the NWP that authorizes 25 cubic yard discharges of dredged or fill material into waters of the United States may be used to fulfill a variety of project purposes, and the indirect effects will vary depending on the specific activity and the environmental characteristics of the site in which the activity takes place. Indication that a factor is not relevant to a particular NWP does not necessarily mean that the NWP would never have an effect on that factor, but that it is a factor not readily identified with the authorized activity. Factors may be relevant, but the adverse effects on the aquatic environment are negligible, such as the impacts of a boat ramp on water level fluctuations or flood hazards. Only the reasonably foreseeable direct, indirect, and cumulative effects are included in the environmental assessment for this NWP. Division and district engineers will impose, as necessary, additional conditions on the NWP authorization or exercise discretionary authority to address locally important factors or to ensure that the authorized activity results in no more than minimal individual and cumulative adverse environmental effects. In any case, adverse effects will be controlled by the terms, conditions, and additional provisions of the NWP. For example, Section 7 Endangered Species Act consultation will be required for all activities that may affect endangered or threatened species or critical habitat (see 33 CFR 330.4(f) and NWP general condition 18). ### 4.2 Impact Analysis This NWP authorizes section 10 activities, in cases where section 404 authorization is required and the section 404 permit program is administered by a state or Indian tribe. This NWP authorizes work in navigable waters of the United States, but it does not authorize discharges of dredged or fill material into those waters. Pre-construction notification is not required for activities authorized by this NWP. If the district engineer determines that the adverse environmental effects of a particular activity are more than no more than minimal after considering mitigation, then discretionary authority will be asserted and the applicant will be notified that another form of DA authorization, such as a regional general permit or individual permit, is required (see 33 CFR 330.4(e) and 330.5). When making minimal adverse environmental effects determinations the district engineer will consider the direct and indirect effects caused by the NWP activity. The district engineer will also consider site specific factors, such as the environmental setting in the vicinity of the NWP activity, the type(s) of resource(s) that will be affected by the NWP activity, the functions provided by the aquatic resources that will be affected by the NWP activity, the degree or magnitude to which the aquatic resources perform those functions, the extent that aquatic resource functions will be lost as a result of the NWP activity (e.g., partial or complete loss), the duration of the adverse effects (temporary or permanent), the importance of the aquatic resource functions to the region (e.g., watershed or ecoregion), and mitigation required by the district engineer. These criteria are listed in the NWPs in Section D, "District Engineer's Decision." If an appropriate functional or condition assessment method is available and practicable to use, that assessment method may be used by the district engineer to assist in the minimal adverse effects determination. The district engineer may add case-specific special conditions to the NWP authorization to address site-specific environmental concerns. Additional conditions can be placed on proposed activities on a regional or case-by-case basis to ensure that the activities have no more than minimal individual and cumulative adverse environmental effects. Regional conditioning of this NWP will be used to account for differences in aquatic resource functions, services, and values across the country, ensure that the NWP authorizes only those activities with no more than minimal individual and cumulative adverse environmental effects, and allow each Corps district to prioritize its workload based on where its efforts will best serve to protect the aquatic environment. Regional conditions can prohibit the use of an NWP in certain waters (e.g., high value waters or specific types of wetlands or waters), lower pre-construction notification thresholds, or require pre-construction notification for some or all NWP activities in certain watersheds or types of waters. Specific NWPs can also be revoked on a geographic or watershed basis where the individual and cumulative adverse environmental effects resulting from the use of those NWPs are more than minimal. The construction and use of fills for temporary access for construction may be authorized by NWP 33 or regional general permits issued by division or district engineers. The related activity must meet the terms and conditions of the specified permit(s). If the discharge is dependent on portions of a larger project that require an individual permit, this NWP will not apply. [See 33 CFR 330.6(c) and (d)] ### 4.3 Cumulative Effects ### 4.3.1 General Analysis The Council on Environmental Quality's (CEQ's) NEPA regulations define cumulative effects as: "the impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions. Cumulative impacts can result from individually minor but collectively significant actions taking place over a period of time." [40 CFR 1508.7.] Therefore, the NEPA cumulative effects analysis for an NWP is not limited to activities authorized by the NWP, other NWPs, or other DA permits (individual permits and regional general permits). The NEPA cumulative effects analysis must also include other Federal and non-Federal activities that affect the Nation's wetlands, streams, and other aquatic resources, as well as other resources (e.g., terrestrial ecosystems, air) that may be directly or indirectly affected by the proposed action and other actions. According to guidance issued by CEQ (1997), a NEPA cumulative effects analysis should focus on specific categories of resources (i.e., resources of concern) identified during the review process as having significant cumulative effects concerns. These cumulative effects analyses also require identification of the disturbances and stressors that cause degradation of those resources, including those caused by actions unrelated to the proposed action. A NEPA cumulative effects analysis does not need to analyze issues that have little relevance to the proposed action or the decision the agency will have to make (CEQ 1997). The geographic scope of this cumulative effects analysis is the United States and its territories, where the NWP may be used to authorize specific activities that require DA authorization. The temporal scope of the cumulative effects analysis includes past federal, non-federal, and private actions that continue to affect the Nation's wetlands, streams, and other aquatic resources (including activities authorized by previously issued NWPs, regional general permits, and DA individual permits) as well as present and reasonably foreseeable future federal, non-federal, and private actions that are affecting, or will affect, wetlands, streams, and other aquatic resources. The present effects of past federal, non-federal, and private actions on wetlands, streams, and other aquatic resources are included in the affected environment, which is described in section 3.0. The affected environment described in section 3.0 also includes present effects of past actions, including activities authorized by NWPs issued from 1977 to 2012 and constructed by permittees, which are captured in national information on the quantity and quality of wetlands, streams, and other aquatic resources. In addition to the activities authorized by this NWP, there are many categories of activities that contribute to cumulative effects on wetlands, streams, and other aquatic resources in the United States, and alter the quantity of those resources, the functions they perform, and the ecosystem services they provide. Activities authorized by past versions of NWP 24, as well as other NWPs, individual permits, letters of permission, and regional general permits have resulted in direct and indirect impacts to wetlands, streams, and other aquatic resources. Those activities may have legacy effects that have added to the cumulative effects and affected the quantity of those resources and
the functions they provide. Discharges of dredged or fill material that do not require DA permits because they are exempt from section 404 permit requirements can also adversely affect the quantity of the Nation's wetlands, streams, and other aquatic resources and the functions and services they provide. Discharges of dredged or fill material that convert wetlands, streams, and other aquatic resources to upland areas result in permanent losses of aquatic resource functions and services. Temporary fills and fills that do not convert waters or wetlands to dry land may cause short-term or partial losses of aquatic resource functions and services. Humans have long had substantial impacts on ecosystems and the ecological functions and services they provide (Ellis et al. 2010). Around the beginning of the 19th century, the degree of impacts of human activities on the Earth's ecosystems began to exceed the degree of impacts to ecosystems caused by natural disturbances and variability (Steffen et al. 2007). All of the Earth's ecosystems have been affected either directly or indirectly by human activities (Vitousek et al. 1997). Over 75 percent of the ice-free land on Earth has been altered by human occupation and use (Ellis and Ramankutty 2008). Approximately 33 percent of the Earth's ice-free land consists of lands heavily used by people: urban areas, villages, lands used to produce crops, and occupied rangelands (Ellis and Ramankutty 2008). For marine ecosystems, Halpern et al. (2008) determined that there are no marine waters that are unaffected by human activities, and that 41 percent of the area of ocean waters are affected by multiple anthropogenic stressors (e.g., land use activities that generate pollution that go to coastal waters, marine habitat destruction or modification, and the extraction of resources). The marine waters most highly impacted by human activities are continental shelf and slope areas, which are affected by both land-based and ocean-based activities (Halpern et al. 2008). Human population density is a good indicator of the relative effect that people have had on local ecosystems, with lower population densities causing smaller impacts to ecosystems and higher population densities having larger impacts on ecosystems (Ellis and Ramankutty 2008). Human activities such as urbanization, agriculture, and forestry alter ecosystem structure and function by changing their interactions with other ecosystems, their biogeochemical cycles, and their species composition (Vitousek et al. 1997). Changes in land use reduce the ability of ecosystems to produce ecosystem services, such as food production, reducing infectious diseases, and regulating climate and air quality (Foley et al. 2005). Recent changes in climate have had substantial impacts on natural ecosystems and human communities (IPCC 2014). Climate change, both natural and anthropogenic, is a major driving force for changes in ecosystem structure, function, and dynamics (Millar and Brubaker 2006). However, there are other significant drivers of change to aquatic and terrestrial ecosystems. In addition to climate change, aquatic and terrestrial ecosystems are also adversely affected by land use and land cover changes, natural resource extraction (including water withdrawals), pollution, species introductions, and removals of species (Staudt et al. 2013, Bodkin 2012, MEA 2005d) and changes in nutrient cycling (Julius et al. 2013). Cumulative effects to wetlands, streams, and other aquatic resources in the United States are not limited to the effects caused by activities regulated and authorized by the Corps under Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act of 1899. Other federal, non-federal, and private activities also contribute to the cumulative effects to wetlands, streams, and other aquatic resources, by changing the quantity of those resources and the functions they provide. Wetlands, streams, and other aquatic resources and the functions and services they provide are directly and indirectly affected by changes in land use and land cover, alien species introductions, overexploitation of species, pollution, eutrophication due to excess nutrients, resource extraction including water withdrawals, climate change, and various natural disturbances (MEA 2005b). Freshwater ecosystems such as lakes, rivers, and streams are altered by changes to water flow, climate change, land use changes, additions of chemicals, resource extraction, and aquatic invasive species (Carpenter et al. 2011). Cumulative effects to wetlands, streams, and other aquatic resources are the result of landscape-level processes (Gosselink and Lee 1989). As discussed in more detail below, cumulative effects to aquatic resources are caused by a variety of activities (including activities that occur entirely in uplands) that take place within a landscape unit, such as the watershed for a river or stream (e.g., Allan 2004, Paul and Meyer 2001, Leopold 1968) or the contributing drainage area for a wetland (e.g., Wright et al. 2006, Brinson and Malvárez 2002, Zedler and Kercher 2005). Cumulative effects also include environmental effects caused by reasonably foreseeable future actions that may take place after the permitted activity is completed. Such effects may include direct and indirect environmental effects caused by the operation and maintenance of the facility constructed on the discharge of dredged or fill material into waters of the United States or the structures or work in navigable waters of the United States. For NWP 24, this includes activities associated with the operation and maintenance of the activities constructed or expanded as a result of activities authorized by this NWP. A variety of pollutants might be released into the environment during the operation and maintenance of these facilities. Those pollutants may be discharged through either point sources or nonpoint sources and reach jurisdictional waters and wetlands. Point-source discharges would likely require National Pollutant Discharge Elimination System Permits under Section 402 of the Clean Water Act, which is administered by U.S. EPA or by states with approved programs. Pollutants may also be discharged through spills and other accidents. Operations and maintenance activities may also have other direct and indirect effects on wetlands, streams, and other aquatic resources. The Corps does not have the authority to regulate operations and maintenance activities that: (1) do not involved discharges of dredged or fill material into waters of the United States; (2) involve activities exempt from Clean Water Act Section 404 permit requirements under section 404(f); and (3) do not involve structures or work requiring DA authorization under Sections 9 or 10 of the Rivers and Harbors Act of 1899. Reasonably foreseeable future actions regulated by the Corps are considered during the evaluation process. In a specific watershed, division or district engineers may determine that the cumulative adverse environmental effects of activities authorized by this NWP are more than minimal. Division and district engineers will conduct more detailed assessments for geographic areas that are determined to be potentially subject to more than minimal cumulative adverse environmental effects. Division and district engineers have the authority to require individual permits in watersheds or other geographic areas where the cumulative adverse environmental effects are determined to be more than minimal, or add conditions to the NWP either on a case-by-case or regional basis to require mitigation measures to ensure that the cumulative adverse environmental effects of these activities are no more than minimal. When a division or district engineer determines, using local or regional information, that a watershed or other geographic area is subject to more than minimal cumulative adverse environmental effects due to the use of this NWP, he or she will use the revocation and modification procedure at 33 CFR 330.5. In reaching the final decision, the division or district engineer will compile information on the cumulative adverse effects and supplement this document. The Corps expects that the convenience and time savings associated with the use of this NWP will encourage applicants to design their projects within the scope of the NWP rather than request individual permits for projects which could result in greater adverse impacts to the aquatic environment. The minimization encouraged by the issuance of this NWP, as well as compensatory mitigation that may be required for specific activities authorized by this NWP, will help reduce cumulative effects to the Nation's wetlands, streams, and other aquatic resources. Cumulative effects to specific categories of resources (i.e., resources of concern in accordance with CEQ's (1997) guidance) are discussed in more detail below. As discussed above, in addition to activities regulated under section 404 of the Clean Water Act and/or section 10 of the Rivers and Harbors Act of 1899, there are many categories of activities that contribute to cumulative effects to the human environment. The activities authorized by this NWP during the 5-year period it will be in effect will result in no more than minimal incremental contributions to cumulative effects to these resource categories. ### 4.3.2 Cumulative Effects to Aquatic Ecosystems The ecological condition of rivers and streams is dependent on the state of their watersheds (NRC 1992), because they are affected by activities that occur in those watersheds, including agriculture, urban development, deforestation, mining, water removal, flow alteration, and invasive species (Palmer et al. 2010). Land use changes affect rivers and streams through increased sedimentation, larger inputs of nutrients (e.g., nitrogen, phosphorous) and pollutants (e.g., heavy metals, synthetic chemicals, toxic organics), altered stream
hydrology, the alteration or removal of riparian vegetation, and the reduction or elimination of inputs of large woody debris (Allan 2004). Agriculture is the primary cause of stream impairment, followed by urbanization (Foley et al. 2005, Paul and Meyer 2001). Agricultural land use adversely affects stream water quality, habitat, and biological communities (Allan 2004). Urbanization causes changes to stream hydrology (e.g., higher flood peaks, lower base flows), sediment supply and transport, water chemistry, and aquatic organisms (Paul and Meyer 2001). Leopold (1968) found that land use changes affect the hydrology of an area by altering stream flow patterns, total runoff, water quality, and stream structure. Changes in peak flow patterns and runoff affect stream channel stability. Stream water quality is adversely affected by increased inputs of sediments, nutrients, and pollutants, many of which come from non-point sources (Paul and Meyer 2001, Allan and Castillo 2007). The construction and operation of water-powered mills in the 17th to 19th centuries substantially altered the structure and function of streams in the eastern United States (Walter and Merritts 2008) and those effects have persisted to the present time. In urbanized and agricultural watersheds, the number of small streams has been substantially reduced, in part by activities that occurred between the 19th and mid-20th centuries (Meyer and Wallace 2001). Activities that affect the quantity and quality of small streams include residential, commercial, and industrial development, mining, agricultural activities, forestry activities, and road construction (Meyer and Wallace 2001), even if those activities are located entirely in uplands. Activities that affect wetland quantity and quality include: land use changes that alter local hydrology (including water withdrawal), clearing and draining wetlands, constructing levees that sever hydrologic connections between rivers and floodplain wetlands, constructing other obstructions to water flow (e.g., dams, locks), constructing water diversions, inputs of nutrients and contaminants, and fire suppression (Brinson and Malvárez 2002). Wetland loss and degradation is caused by hydrologic modifications of watersheds, drainage activities, logging, agricultural runoff, urban development, conversion to agriculture, aquifer depletion, river management, (e.g., channelization, navigation improvements, dams, weirs), oil and gas development activities, levee construction, peat mining, and wetland management activities (Mitsch and Hernandez 2013). Upland development adversely affects wetlands and reduces wetland functionality because those activities change surface water flows and alter wetland hydrology, contribute stormwater and associated sediments, nutrients, and pollutants, cause increases in invasive plant species abundance, and decrease the diversity of native plants and animals (Wright et al. 2006). Many of the remaining wetlands in the United States are degraded (Zedler and Kercher 2005). Wetland degradation and losses are caused by changes in water movement and volume within a watershed or contributing drainage area, altered sediment transport, drainage, inputs of nutrients from non-point sources, water diversions, fill activities, excavation activities, invasion by non-native species, land subsidence, and pollutants (Zedler and Kercher 2005). According to Mitsch and Gosselink (2015), categories of activities that alter wetlands include: wetland conversion through drainage, dredging, and filling; hydrologic modifications that change wetland hydrology and hydrodynamics; highway construction and its effects on wetland hydrology; peat mining; waterfowl and wildlife management; agriculture and aquaculture activities; water quality enhancement activities; and flood control and stormwater protection. There is also little national-level information on the ecological condition of the Nation's wetlands, streams, and other aquatic resources, or the amounts of functions they provide, although reviews have acknowledged that most of these resources are degraded (Zedler and Kercher 2005, Allan 2004) or impaired (U.S. EPA 2015) because of various activities, disturbances, and other stressors. These data deficiencies make it more difficult to characterize the affected environment to assess cumulative effects, and the relative contribution of the activities authorized by this NWP to those cumulative effects. As discussed in section 3.0 of this document there is a wide variety of causes and sources of impairment of the Nation's rivers, streams, wetlands, lakes, estuarine waters, and marine waters (U.S. EPA 2015), which also contribute to cumulative effects to these aquatic resources. Many of those causes of impairment are point and non-point sources of pollutants that are not regulated under Section 404 of the Clean Water Act or Section 10 of the Rivers and Harbors Act of 1899. Two common causes of impairment for rivers and streams, habitat alterations and flow alterations, may be due in part to activities regulated by the Corps under Section 404 of the Clean Water Act and/or Section 10 of the Rivers and Harbors Act of 1899. Habitat and flow alterations may also be the caused by activities that do not involve discharges of dredged or fill material or structures or work in navigable waters. For wetlands, impairment due to habitat alterations, flow alterations, and hydrology modifications may involve activities regulated under section 404, but these causes of impairment may also be due to unregulated activities, such as changes in upland land use that affects the movement of water through a watershed or contributing drainage area or the removal of vegetation. Many of the activities discussed in this cumulative effects section that affect wetlands, streams, and other aquatic resources are not subject to regulation under Section 404 of the Clean Water Act or Section 10 of the Rivers and Harbors Act of 1899. Estimates of the original acreage of wetlands in the United States vary widely because of the use of different definitions and how those estimates were made (Harris and Gosselink 1990). Dahl (1990) estimates that approximately 53 percent of the wetlands in the conterminous United States were lost in the 200-year period covering the 1780s to 1980s. Much of the wetland loss occurred in the mid-19th century as a result of indirect effects of beaver trapping and the removal of river snags, which substantially reduced the amount of land across the country that was inundated because of beaver dams and river obstructions (Harris and Gosselink 1990). The annual rate of wetland loss has decreased substantially since the 1970s (Dahl 2011), when wetland regulation became more prevalent (Brinson and Malvárez 2002). Between 2004 and 2009, there was no statistically significant difference in wetland acreage in the conterminous United States (Dahl 2011). According to the 2011 wetland status and trends report, during the period of 2004 to 2009 urban development accounted for 11 percent of wetland losses (61,630 acres), rural development resulted in 12 percent of wetland losses (66,940 acres), silviculture accounted for 56 percent of wetland losses (307,340 acres), and wetland conversion to deepwater habitats caused 21 percent of the loss in wetland area (115,960 acres) (Dahl 2011). Some of the losses occurred to wetlands that are not subject to Clean Water Act jurisdiction and some losses are due to activities not regulated under Section 404 of the Clean Water Act, such as unregulated drainage activities, exempt forestry activities, or water withdrawals. From 2004 to 2009, approximately 100,020 acres of wetlands were gained as a result of wetland restoration and conservation programs on agricultural land (Dahl 2011). Another source of wetland gain is conversion of other uplands to wetlands (389,600 acres during 2004 to 2009) (Dahl 2011). Inventories of wetlands, streams, and other aquatic resources are incomplete, especially at national or regional scales, because the techniques used for those inventories cannot identify all of those resources, especially small wetlands and streams (e.g., Dahl (2011) for wetlands; Meyer and Wallace (2001) for streams). As discussed in section 3.0, national scale inventories of wetlands, streams, and other types of aquatic resources underestimate the quantity of those resources, and only general information is available on their ability to perform ecological functions and services. Therefore, it is not appropriate to make decisions concerning the significance of cumulative effects by calculating the relative proportion of the aquatic resources baseline impacted by a particular action, or a series of actions subject to a particular federal program. In addition, such an approach does not take into account the many categories of other activities that have direct and indirect effects on aquatic resources that are regulated under other federal, states, or local programs or are not regulated by any entity. Under the Council on Environmental Quality's NEPA definition at 40 CFR 1508.7, a cumulative effects analysis should instead examine the relative contribution that a proposed action will have on cumulative effects to one or more categories of natural resources (i.e., "the incremental impact of the action" and whether that incremental impact is significant or not significant). For aquatic ecosystems, climate change affects water quality, biogeochemical cycling, and water storage (Julius et al. 2013). Climate change will also affect the abundance and distribution of wetlands across the United States, as well as the functions they provide (Mitsch and Gosselink 2015). Climate change results in increases in stream temperatures, more waterbodies with anoxic conditions, degradation of water quality, and increases in flood and drought frequencies (Julius et al. 2013). The increasing carbon dioxide concentration in
the atmosphere also changes the pH of the oceans, resulting in ocean acidification (RS and NAS 2014), which adversely affects corals and some other marine organisms. Compensatory mitigation required by district engineers for specific activities authorized by this NWP will help reduce the contribution of those activities to the cumulative effects on the Nation's wetlands, streams, and other aquatic resources, by providing ecological functions to partially or fully replace some or all of the aquatic resource functions lost as a result of those activities. Compensatory mitigation requirements for the NWPs are described in general condition 23 and compensatory mitigation projects must also comply with the applicable provisions of 33 CFR part 332. District engineers will establish compensatory mitigation requirements on a case-by-case basis, after evaluating pre-construction notifications. Compensatory mitigation requirements for individual NWP activities will be specified through permit conditions added to NWP authorizations. When compensatory mitigation is required, the permittee is required to submit a mitigation plan prepared in accordance with the requirements of 33 CFR 332.4(c). Credits from approved mitigation banks or in-lieu fee programs may also be used to satisfy compensatory mitigation requirements for NWP authorizations. Monitoring is required to demonstrate whether the permittee-responsible mitigation project, mitigation bank, or in-lieu fee project is meeting its objectives and providing the intended aquatic resource structure and functions. If the compensatory mitigation project is not meeting its objectives, adaptive management will be required. Adaptive management may involve taking actions, such as site modifications, remediation, or design changes, to ensure the compensatory mitigation project meets its objectives (see 33 CFR 332.7(c)). The estimated contribution of activities authorized by this NWP to the cumulative effects to wetlands, streams, and other aquatic resources in the United States during the five year period that the NWP would be in effect, in terms of the estimated number of time this NWP would be used until it expires and the projected impacts and compensatory mitigation, is provided in section 7.2.2. It is not practical or feasible to provide quantitative data on the multitude of other contributors to cumulative effects to these resources, including the federal, non-federal, and private activities that are not regulated by the Corps that will also occur during the five year period this NWP is in effect. National-level data on these many categories of activities that are not regulated by the Corps but contribute to cumulative effects are either not collected for the nation or they are not accessible. The activities authorized by this NWP will result in a minor incremental contribution to the cumulative effects to wetlands, streams, and other aquatic resources in the United States because, as discussed in this section, they are one category of many categories of activities that affect those aquatic resources. The causes of cumulative effects discussed in this section include past, present, and reasonably foreseeable future federal, non-federal, and private activities. For the national-scale cumulative effects analysis presented in this section, it is not possible to quantify the relative contributions of all of the various activities that affect the quantity of wetlands, streams, and other aquatic resources and the functions and services they provide, because such data are not available at the national scale. As discussed above, there are many categories of activities not regulated by the Corps under section 404 of the Clean Water Act and/or section 10 of the Rivers and Harbors Act of 1899 that contribute to cumulative effects to wetland, streams, and other aquatic resources. During the 5-year period this NWP is in effect, the activities it authorizes will result in only a no more than minimal incremental contribution to cumulative effects to wetlands, streams, and other aquatic ecosystems. ### 4.3.3 Cumulative Effects to Coastal Areas In the United States, approximately 39 percent of its population lives in counties that are next to coastal waters, the territorial seas, or the Great Lakes (NOAA 2013). Those counties comprise less than 10 percent of the land area of the United States (NOAA 2013). Coastal waters are also affected by a wide variety of activities. The major drivers of changes to coastal areas are: development activities that alter coastal forests, wetlands, and coral reef habitats for aquaculture and the construction of urban areas, industrial facilities, and resort and port developments (MEA 2005d). Dredging, reclamation, shore protection and other structures (e.g., causeways and bridges), and some types of fishing activities also cause substantial changes to coastal areas (MEA 2005d). Nitrogen pollution to coastal zones change coral reef communities (MEA 2005d). Adverse effects to coastal waters are caused by habitat modifications, point source pollution, non-point source pollution, changes to hydrology and hydrodynamics, exploitation of coastal resources, introduction of non-native species, global climate change, shoreline erosion, and pathogens and toxins (NRC 1994). Substantial alterations of coastal hydrology and hydrodynamics are caused by land use changes in watersheds draining to coastal waters, the channelization or damming of streams and rivers, water consumption, and water diversions (NRC 1994). Approximately 52 percent of the population of the United States lives in coastal watersheds (NOAA 2013). Eutrophication of coastal waters is caused by nutrients contributed by waste treatment systems, non-point sources, and the atmosphere, and may cause hypoxia or anoxia in coastal waters (NRC 1994). Changes in water movement through watersheds may also alter sediment delivery to coastal areas, which affects the sustainability of wetlands and intertidal habitats and the functions they provide (NRC 1994). Most inland waters in the United States drain to coastal areas, and therefore activities that occur in inland watersheds affect coastal waters (NRC 1994). Inland land uses, such as agriculture, urban development, and forestry, adversely affect coastal waters by diverting fresh water from estuaries and by acting as sources of nutrients and pollutants to coastal waters (MEA 2005d). Coastal wetlands have been substantially altered by urban development and changes to the watersheds that drain to those wetlands (Mitsch and Hernandez 2013). Coastal habitat modifications are the result of dredging or filling coastal waters, inputs of sediment via non-point sources, changes in water quality, or alteration of coastal hydrodynamics (NRC 1994). Coastal development activities, including those that occur in uplands, affect marine and estuarine habitats (MEA 2005b). The introduction of non-native species may change the functions and structure of coastal wetlands and other habitats (MEA 2005b). Fishing activities may also modify coastal habitats by changing habitat structure and the biological communities that inhabit those areas (NRC 1994). As discussed above, there are many categories of activities not regulated by the Corps under section 404 of the Clean Water Act and/or section 10 of the Rivers and Harbors Act of 1899 that contribute to cumulative effects to coastal areas. During the 5-year period this NWP is in effect, the activities it authorizes will result in only a no more than minimal incremental contribution to cumulative effects to coastal areas. ### 4.3.4 Cumulative Effects to Endangered and Threatened Species The status of species as threatened or endangered is also due to cumulative effects (NRC 1986, Odum 1982), and activities authorized by Department of the Army permits are a minor contributor to the cumulative effects to endangered and threatened species. Land use and land cover changes are the main cause of the loss of biodiversity (Vitousek et al. 1997). The decline of a species that leads to its status as endangered or threatened is usually caused by multiple factors rather than a single factor (Wilcove et al. 1998, Venter et al. 2006, Czech and Krausman 1997, Richter et al. 1997). It is difficult to determine the relative contribution of each cause of species decline or endangerment (Czech and Krausman 1997). For example, for fish species, the number of factors affecting their status ranged from 1 to 15, with an average of 4.5 threats. Over 40 percent of fish species were endangered or threatened as a result of 5 or more factors, and less than 7 percent of fish species were identified as imperiled because of a single factor. During the past few hundred years, human activities have increased species extinction rates by around 1,000 times the Earth's background extinction rates (MEA 2005c). The main causes of the decline of species to endangered or threatened status are habitat loss and degradation, introduction of species, overexploitation, disease, and climate change (MEA 2005d). Habitat degradation also includes changes in habitat quality caused by habitat fragmentation and pollution. Habitat fragmentation can occur in rivers, and is characterized by disruption of a river's natural flow regime by dams, inter-basin water transfers, or water withdrawals and affects 90 percent of the world's river water volume (MEA 2005d). Invasive alien species are a major cause of species endangerment in freshwater habitats (MEA 2005d). Losses of biological diversity are directly caused by habitat modifications, including land use changes, alteration of river and stream flows, water withdrawals from rivers, losses of coral reefs, and alteration of the sea bed caused by trawling (MEA 2005c). Other direct causes of losses of biodiversity include pollution, invasive species, species overexploitation, climate change, and disease (MEA 2005c). There are often multiple factors
interacting with each other to reduce biodiversity, instead of single factors working alone (MEA 2005c). Wilcove et al. (1998) evaluated five categories of threats to species in the United States, and conducted further analyses on the types of habitat destruction that caused species to be listed as endangered or threatened under the Endangered Species Act. The five categories of threats were habitat destruction, alien species, overharvest, pollution, and disease. Wilcove et al. (1998) focused on species under the jurisdiction of the U.S. Fish and Wildlife Service. More than half of the endangered and threatened species under the jurisdiction of the NMFS were listed after this study was published. Wilcove et al. (1998) found information on the threats to 1,880 species, out of a total of 2,490 species that were categorized as imperiled at that time. Habitat destruction and degradation was the most comment threat, a factor for 85 percent of the imperiled species analyzed. The second most common threat was competition with non-native species, or predation by those species. For aquatic animal species, pollution was the second most common cause of endangerment, after habitat loss (Wilcove et al. 1998). To more closely examine the causes of habitat loss, Wilcove et al. (1998) analyzed U.S. Fish and Wildlife endangered species listing documents and identified 14 categories of habitat loss or degradation: agriculture; livestock grazing; mining and oil and gas extraction; logging; infrastructure development; road construction and maintenance; military activities; outdoor recreation; use of off-road vehicles; water development projects (e.g., water diversions, flood control facilities; drainage projects; aquaculture; navigation); dams, impoundments, and other water barriers; pollutants (e.g., sediment and mining pollutants); residential and commercial developments; and disruption of fire ecology. Many species were subject to more than one cause of endangerment (Wilcove et al. 1998). Agriculture was the leading cause of habitat destruction, affecting 38 percent of endangered species, followed by residential and commercial development (35 percent), water development (30 percent), and infrastructure development (17 percent). Habitat destruction caused by water development affected 91 percent of listed fish species and 99 percent of listed mussel species. Richter et al. (1997) studied the factors that endanger freshwater animals. The most significant threats to those species are habitat destruction, habitat fragmentation, pollution, and exotic species. Richter et al. (1997) also looked at the stressors that are impeding the recovery of aquatic species at risk of extinction and found that changes in stream bed substrate composition (e.g., siltation), hydrologic alteration, interactions with other species, nutrient inputs, and habitat destruction were the most common factors. The major sources of stressors to aquatic species are agricultural land use, urban land use, energy generation industries (especially hydroelectric power), and exotic species (Richter et al. 1997). Agricultural activity was identified as having significant adverse effects on aquatic species through non-point source pollution (sediment and nutrients), interactions with exotic species, and water impoundments (Richter et al. 1997). Water impoundments cause changes in hydrology, as well as habitat destruction and fragmentation. Urban land use resulted in much less non-point source pollution than agricultural activities (Richter et al. 1997). Note that in these studies on species threats and endangerment, the categories of human activities are discussed in general terms, and may include activities in uplands as well as activities in jurisdictional and non-jurisdictional waters and wetlands. Climate change will also alter species distributions, and extinction may occur for those species that cannot adjust to the changes in climate (Starzmoski 2013). As discussed above, there are many categories of activities not regulated by the Corps under section 404 of the Clean Water Act and/or section 10 of the Rivers and Harbors Act of 1899 that contribute to cumulative effects to endangered and threatened species and their designated critical habitats. During the 5-year period this NWP is in effect, the activities it authorizes will result in only a no more than minimal incremental contribution to cumulative effects to endangered and threatened species and their habitats. ### 4.3.5 Projected Contribution of the 2017 NWP 24 to Cumulative Impacts It is not practical or feasible to provide quantitative data on the multitude of other contributors to cumulative effects to these resources, including the federal, non-federal, and private activities that are not regulated by the Corps that will also occur during the five year period this NWP is in effect. National-level data on these many categories of activities that are not regulated by the Corps but contribute to cumulative effects are either not collected for the nation or they are not accessible. The activities authorized by this NWP will result in a minor incremental contribution to the cumulative effects to wetlands, streams, and other aquatic resources in the United States because, as discussed in this section, they are one category of many categories of activities that affect those aquatic resources. The causes of cumulative effects discussed in this section include past, present, and reasonably foreseeable future federal, non-federal, and private activities. For the national-scale cumulative effects analysis presented in this section, it is not possible to quantify the relative contributions of the various activities that affect the quantity of wetlands, streams, and other aquatic resources and the functions they provide, because such data are not available at the national scale. Based on reported use of this NWP during the period of March 19, 2012, to March 12, 2015, the Corps estimates that this NWP will be used approximately 3 times per year on a national basis, resulting in impacts to approximately 0.5 acre of waters of the United States, including jurisdictional wetlands. The reported use includes pre-construction notifications submitted to Corps districts, as required by the terms and conditions of the NWP as well as regional conditions imposed by division engineers. The reported use also includes voluntary notifications to submitted to Corps districts where the applicants request written verification in cases when pre-construction notification is not required. The reported use does not include activities that do not require pre-construction notification and were not voluntarily reported to Corps districts. The Corps estimates that 10 NWP 24 activities will occur each year that do not require pre-construction notification, and that these activities will impact 0.2 acre of jurisdictional waters each year. Based on reported use of this NWP during that time period, the Corps estimates that zero percent of the NWP 24 verifications will require compensatory mitigation to offset the authorized impacts to waters of the United States and ensure that the authorized activities resulted in only minimal adverse effects on the aquatic environment. The verified activities that do not require compensatory mitigation will have been determined by Corps district engineers to result in no more than minimal individual and cumulative adverse effects on the aquatic environment without compensatory mitigation. During 2017-2022, the Corps expects little change to the percentage of NWP 24 verifications requiring compensatory mitigation, because there have been no substantial changes in the mitigation general condition or the NWP regulations for determining when compensatory mitigation should be required for NWP activities. The Corps estimates that compensatory mitigation will be not be required to offset these impacts. The demand for these types of activities could increase or decrease over the five-year duration of this NWP. Based on these annual estimates, the Corps estimates that approximately 65 activities could be authorized over a five year period until this NWP expires, resulting in impacts to approximately 3.5 acres of waters of the United States, including jurisdictional wetlands. No compensatory mitigation will be required to offset those impacts. Compensatory mitigation is the restoration (re-establishment or rehabilitation), establishment, enhancement, and/or in certain circumstances preservation of aquatic resources for the purposes of offsetting unavoidable adverse impacts which remain after all appropriate and practicable avoidance and minimization has been achieved. [33 CFR 332.2] Compensatory mitigation is not normally required to offset the impacts resulting from the activities authorized by this NWP. The demand for these types of activities could increase or decrease over the five-year duration of this NWP. The activities authorized by this NWP will result in minor contributions to the cumulative effects that have occurred to section 10 waters and wetlands because, as discussed in this section, they are one of many activities that affect those resources. The causes of cumulative effects discussed in this section include past, present, and reasonably foreseeable future federal, non-federal, and private activities. For the national-scale cumulative effects analysis presented in this section, it is not possible to quantify the relative contributions of the various activities that affect the quantity of section 10 waters and wetlands and the functions they provide, because such data are not available at the national scale. ### 4.4 Climate Change Climate change represents one of the greatest challenges our country faces with profound and wide-ranging implications for the health and welfare of Americans, economic growth, the environment, and international security. Evidence of the warming of climate system is unequivocal
and the emission of greenhouse gases from human activities is the primary driver of these changes (IPCC 2014). Already, the United States is experiencing the impacts of climate change and these impacts will continue to intensify as warming intensifies. It will have far-reaching impacts on natural ecosystems and human communities. These effects include sea level rise, ocean warming, increases in precipitation in some areas and decreases in precipitation in other areas, decreases in sea ice, more extreme weather and climate events including more floods and droughts, increasing land surface temperatures, increasing ocean temperatures, and changes in plant and animal communities (IPCC 2014). Climate change also affects human health in some geographic area by increasing exposure to ground-level ozone and/or particulate matter air pollution (Luber et al. 2014). Climate change also increases the frequency of extreme heat events that threaten public health and increases risk of exposure to vector-borne diseases (Luber et al. 2014). Climate impacts affect the health, economic well-being, and welfare of Americans across the country, and especially children, the elderly, and others who are particularly vulnerable to specific impacts. Climate change can affect ecosystems and species through a number of mechanisms, such as direct effects on species, populations, and ecosystems; compounding the effects of other stressors; and the direct and indirect effects of climate change mitigation or adaptation actions (Staudt et al. 2013). Other stressors include land use and land cover changes, natural resource extraction (including water withdrawals), pollution, species introductions, and removals of species (Staudt et al. 2013, Bodkin 2012, MEA 2005d) and changes in nutrient cycling (Julius et al. 2013). ### **5.0 Public Interest Review** ### 5.1 Public Interest Review Factors (33 CFR 320.4(a)(1)) For each of the 20 public interest review factors, the extent of the Corps consideration of expected impacts resulting from the use of this NWP is discussed, as well as the reasonably foreseeable cumulative adverse effects that are expected to occur. The Corps decision-making process involves consideration of the benefits and detriments that may result from the activities authorized by this NWP. (a) Conservation: The activities authorized by this NWP may modify the natural resource characteristics of the project area. Compensatory mitigation, if required for activities authorized by this NWP, will result in the restoration, enhancement, establishment, or preservation of aquatic habitats that will offset losses of conservation values. The adverse effects of activities authorized by this NWP on conservation will be minor. - (b) <u>Economics</u>: The activities authorized by this NWP will have positive impacts on the local economy. During construction, these activities will generate jobs and revenue for local contractors as well as revenue to supply companies that sell these types of construction materials. - (c) <u>Aesthetics</u>: Activities authorized under the NWP will alter the visual character of some waters of the United States. The extent and perception of these changes will vary, depending on the size and configuration of the activity, the nature of the surrounding area, and the public uses of the area. These activities authorized by this NWP can also modify other aesthetic characteristics, such as air quality and the amount of noise. The increased human use of the project area and surrounding land will also alter local aesthetic values. - (d) General environmental concerns: Activities authorized by this NWP will affect general environmental concerns, such as water, air, noise, and land pollution. The authorized activities will also affect the physical, chemical, and biological characteristics of the environment. The adverse effects of the activities authorized by this NWP on general environmental concerns will be minor, since the NWP authorizes only those activities with no more than minimal adverse environmental effects. Adverse effects to the chemical composition of the aquatic environment will be controlled by general condition 6, which states that the material used for construction must be free from toxic pollutants in toxic amounts. General condition 23 requires mitigation to minimize adverse effects to the aquatic environment through avoidance and minimization at the project site. Compensatory mitigation may be required by district engineers to ensure that the net adverse environmental effects are no more than minimal. Specific environmental concerns are addressed in other sections of this document. - (e) <u>Wetlands</u>: Activities in navigable waters of the United States, where a state or Indian tribe administers its own section 404 permit program pursuant to 33 U.S.C. 1344(g)-(l), may result in the loss or alteration of wetlands. In some cases, the affected wetlands will be permanently filled, resulting in the permanent loss of aquatic resource functions and values. Wetlands may also be converted to other uses and habitat types. Some wetlands may be temporarily impacted by the activity through the use of temporary staging areas and access roads. These wetlands will be restored, unless the district engineer authorizes another use for the area, but the plant community may be different. Compensatory mitigation may be required to offset the loss of wetlands and ensure that the adverse environmental effects are no more than minimal. Wetlands provide habitat, including foraging, nesting, spawning, rearing, and resting sites for aquatic and terrestrial species. The loss or alteration of wetlands may alter natural drainage patterns. Wetlands reduce erosion by stabilizing the substrate. Wetlands also act as storage areas for stormwater and flood waters. Wetlands may act as groundwater discharge or recharge areas. The loss of wetland vegetation will adversely affect water quality because these plants trap sediments, pollutants, and nutrients and transform chemical compounds. Wetland vegetation also provides habitat for microorganisms that remove nutrients and pollutants from water. Wetlands, through the accumulation of organic matter, act as sinks for some nutrients and other chemical compounds, reducing the amounts of these substances in the water. General condition 23 requires avoidance and minimization of impacts to waters of the United States, including wetlands, at the project site. Compensatory mitigation may be required by district engineers to ensure that the net adverse environmental effects are no more than minimal. Division engineers can regionally condition this NWP to restrict or prohibit the use of this NWP in high value wetlands. District engineers will also exercise discretionary authority to require an individual permit if the wetlands to be filled are high value and the activity will result in more than minimal adverse environmental effects. District engineers can also add case-specific special conditions to the NWP authorization to provide protection to wetlands or require compensatory mitigation to offset losses of wetlands. - (f) <u>Historic properties</u>: General condition 20 states that in cases where the district engineer determines that the activity may affect properties listed, or eligible for listing, in the National Register of Historic Places, the activity is not authorized, until the requirements of Section 106 of the National Historic Preservation Act have been satisfied. - (g) Fish and wildlife values: This NWP authorizes activities in navigable waters of the United States, which provide habitat to many species of fish and wildlife. Activities authorized by this NWP may alter the habitat characteristics of navigable waters, decreasing the quantity and quality of fish and wildlife habitat. Wetland and riparian vegetation provides food and habitat for many species, including foraging areas, resting areas, corridors for wildlife movement, and nesting and breeding grounds. Open waters provide habitat for fish and other aquatic organisms. Division engineers can regionally condition this NWP to allow case-by-case review of certain activities authorized by the NWP, to ensure that those activities result in no more than minimal adverse environmental effects. In addition, compensatory mitigation may be required by district engineers to restore, enhance, establish, and/or preserve wetlands and other aquatic habitats to offset losses of waters of the United States. General condition 2 will reduce the adverse effects to fish and other aquatic species by prohibiting activities that substantially disrupt the movement of indigenous aquatic species. Compliance with general conditions 3 and 5 will ensure that the authorized activity has no more than minimal adverse effects on spawning areas and shellfish beds, respectively. The authorized activity cannot have more than minimal adverse effects on breeding areas for migratory birds, due to the requirements of general condition 4. For an NWP activity, compliance with the Bald and Golden Eagle Protection Act (16 U.S.C. 668(a)-(d)), the Migratory Bird Treaty Act (16 U.S.C. 703; 16 U.S.C. 712), and the Marine Mammal Protection Act (16 U.S.C. 1361 et seq.) is the responsibility of the project proponent. General condition 19 states that the permittee is responsible for contacting appropriate local office of the U.S. Fish and Wildlife Service to determine applicable measures to reduce impacts to migratory birds or eagles, including whether "incidental take" permits are necessary and available under the Migratory Bird Treaty Act or Bald and Golden Eagle Protection Act for a particular activity. Consultation pursuant to the essential fish habitat provisions of the Magnuson-Stevens Fishery Conservation and Management Act will occur as necessary for proposed NWP activities that may adversely affect essential fish habitat. Consultation may occur on a case-by-case or programmatic
basis. Division and district engineers can impose regional and special conditions to ensure that activities authorized by this NWP will result in no more than minimal adverse effects on essential fish habitat. - (h) <u>Flood hazards</u>: The activities authorized by this NWP will have negligible adverse effects on the flood-holding capacity of 100-year floodplains, including surface water flow velocities. Compliance with general condition 9 will reduce flood hazards. This general condition requires the permittee to maintain, to the maximum extent practicable, the preconstruction course, condition, capacity, and location of open waters, except under certain circumstances. Much of the land area within 100-year floodplains is upland, and outside of the Corps scope of review. - (i) <u>Floodplain values</u>: Activities authorized by this NWP will have minor adverse effects on the flood-holding capacity of floodplains, as well as other floodplain values. Compensatory mitigation may be required for activities authorized by this NWP, which will offset losses of waters of the United States and provide water quality functions and wildlife habitat. General condition 23 requires avoidance and minimization of impacts to waters of the United States to the maximum extent practicable at the project site, which will reduce losses of floodplain values. The mitigation requirements of general condition 23 will help ensure that the adverse effects of these activities on floodplain values are no more than minimal. Compliance with general condition 9 will ensure that activities in 100-year floodplains will not cause more than minimal adverse effects on flood storage and conveyance. - (j) <u>Land use</u>: Activities authorized by this NWP will often change the land use from natural to developed. The change in land use will alter the character of the area, usually resulting in the loss of open space. The general public will often benefit from the activities authorized by this NWP. The structures or work in navigable waters will, in most cases, provide economic benefits for the surrounding community. Since the primary responsibility for land use decisions is held by state, local, and Tribal governments, the Corps scope of review is limited to significant issues of overriding national importance, such as navigation and water quality (see 33 CFR 320.4(j)(2)). - (k) <u>Navigation</u>: Activities authorized by this NWP must comply with general condition 1, which states that no activity may cause more than minimal adverse effects on navigation. - (1) <u>Shore erosion and accretion</u>: The activities authorized by this NWP will have minor direct effects on shore erosion and accretion processes. Those adverse effects will be considered primarily by the state or Indian tribe through its section 404 authorization process. - (m) <u>Recreation</u>: Activities authorized by this NWP may change the recreational uses of the area. Certain recreational activities, such as bird watching, hunting, and fishing may be enhanced or adversely affected by the authorized structures or work, depending on the nature of the structures or work. - (n) Water supply and conservation: Activities authorized by this NWP may affect both surface water and groundwater supplies. After the NWP activity is completed, there may be an increased demand for potable water in the region. Activities authorized by this NWP can also affect the quality of water supplies by adding pollutants to surface waters and groundwater, but many causes of water pollution, such as discharges regulated under Section 402 of the Clean Water Act, are outside the Corps scope of review. Some water pollution concerns can be addressed through water quality management measures that may be required for activities authorized by this NWP. The quantity and quality of local water supplies may be enhanced through the construction of water treatment facilities. Division and district engineers can prohibit the use of this NWP in watersheds for public water supplies, if it is in the public interest to do so. General condition 7 prohibits discharges in the vicinity of public water supply intakes. Compensatory mitigation may be required for activities authorized by this NWP, which will help improve the quality of surface waters. - (o) Water quality: Activities authorized by this NWP may be in wetlands and open waters and may have adverse effects on water quality. These activities can result in increases in nutrients, sediments, and pollutants in the water. The loss of wetland and riparian vegetation will adversely affect water quality because these plants trap sediments, pollutants, and nutrients and transform chemical compounds. Wetland and riparian vegetation also provides habitat for microorganisms that remove nutrients and pollutants from water. Wetlands, through the accumulation of organic matter, act as sinks for some nutrients and other chemical compounds, reducing the amounts of these substances in the water column. Wetlands and riparian areas also decrease the velocity of floodwaters, removing suspended sediments from the water column and reducing turbidity. Riparian vegetation also serves an important role in the water quality of streams by shading the water from the intense heat of the sun. Compensatory mitigation may be required for activities authorized by this NWP, to ensure that the activities do not have more than minimal adverse environmental effects, including water quality. Wetlands and riparian areas restored, established, enhanced, or preserved as compensatory mitigation may provide local water quality benefits. During construction, small amounts of oil and grease from construction equipment may be discharged into the waterway. Because most of the construction will occur during a relatively short period of time, the frequency and concentration of these discharges are not expected to have more than minimal adverse effects on overall water quality. This NWP requires a Section 401 water quality certification, since it authorizes discharges of dredged or fill material into waters of the United States. Most water quality concerns are addressed by the state or Tribal Section 401 agency. - (p) <u>Energy needs</u>: Activities authorized by this NWP may cause increases in energy consumption in the area, especially electricity, natural gas, and petroleum products. Additional power plants or oil refineries may be needed to meet increases in energy demand, but these issues are beyond the Corps scope of review. - (q) <u>Safety</u>: The activities authorized by this NWP will be subject to Federal, state, and local safety laws and regulations. Therefore, this NWP will not adversely affect the safety of the project area. - (r) <u>Food and fiber production</u>: Activities authorized by this NWP will have negligible adverse effects on food and fiber production, since it authorizes activities in section 10 waters. Loss of farmland is more appropriately addressed through the land use planning and zoning authority held by state and local governments. - (s) <u>Mineral needs</u>: Activities authorized by this NWP may increase demand for aggregates and stone, which are used to construct structures in section 10 waters. Activities authorized by this NWP may increase the demand for other building materials, such as steel, aluminum, and copper, which are made from mineral ores. - (t) <u>Considerations of property ownership</u>: The NWP complies with 33 CFR 320.4(g), which states that an inherent aspect of property ownership is a right to reasonable private use. The NWP provides expedited section 10 authorization for activities that are also permitted by a state or Indian tribe administering its own section 404 permit program pursuant to 33 U.S.C. 1344(g)-(l), provided the activity complies with the terms and conditions of the NWP and results in no more than minimal adverse environmental effects. #### 5.2 Additional Public Interest Review Factors (33 CFR 320.4(a)(2)) # 5.2.1 Relative extent of the public and private need for the proposed structure or work This NWP authorizes activities in navigable waters of the United States, in cases where the activity is also permitted by a state or Indian tribe administering its own section 404 permit program pursuant to 33 U.S.C. 1344(g)-(l), provided the activities requiring section 10 authorization have no more than minimal individual and cumulative adverse environmental effects. This NWP provides a streamlined authorization process for activities with minimal individual and cumulative adverse effects on the aquatic environment. The need for this NWP is based upon the number of these activities that occur annually with no more than minimal individual and cumulative adverse environmental effects. 5.2.2 Where there are unresolved conflicts as to resource use, the practicability of using reasonable alternative locations and methods to accomplish the objective of the proposed structure or work Most situations in which there are unresolved conflicts concerning resource use arise when environmentally sensitive areas are involved (e.g., special aquatic sites, including wetlands) or where there are competing uses of a resource. The nature and scope of the activity, when planned and constructed in accordance with the terms and conditions of this NWP, reduce the likelihood of such conflict. In the event that there is a conflict, the NWP contains provisions that are capable of resolving the matter (see Section 1.2 of this document). General condition 23 requires permittees to avoid and minimize adverse effects to waters of the United States to the maximum extent practicable on the project site. Consideration of off-site alternative locations is not required for activities that are authorized by general permits. General permits authorize activities that have no more than minimal individual and cumulative adverse effects on the environment and the overall public interest. The district engineer
will exercise discretionary authority and require an individual permit if the proposed activity will result in more than minimal adverse environmental effects on the project site. The consideration of off-site alternatives can be required during the individual permit process. # 5.2.3 The extent and permanence of the beneficial and/or detrimental effects which the proposed structure or work is likely to have on the public and private uses to which the area is suited The nature and scope of the activities authorized by the NWP will most likely restrict the extent of the beneficial and detrimental effects to the area immediately surrounding the structures. Activities authorized by this NWP will have no more than minimal individual and cumulative adverse environmental effects. The terms, conditions, and provisions of the NWP were developed to ensure that individual and cumulative adverse environmental effects are no more than minimal. Specifically, NWPs do not obviate the need for the permittee to obtain other Federal, state, or local authorizations required by law. The NWPs do not grant any property rights or exclusive privileges (see 33 CFR 330.4(b) for further information). Additional conditions, limitations, restrictions, and provisions for discretionary authority, as well as the ability to add activity-specific or regional conditions to this NWP, will provide further safeguards to the aquatic environment and the overall public interest. There are also provisions to allow suspension, modification, or revocation of the NWP. #### **6.0 Endangered and Threatened Species.** The Corps' current regulations and procedures for the NWPs result in compliance with Section 7 of the Endangered Species Act (ESA) and ensure that activities authorized by this NWP will not jeopardize the continued existence or any listed threatened and endangered species or result in the destruction or adverse modification of critical habitat. Current local procedures in Corps districts are effective in ensuring compliance with ESA. Those local procedures include regional programmatic consultations and the development of Standard Local Operating Procedures for Endangered Species (SLOPES). The issuance or reissuance of an NWP, as governed by NWP general condition 18 (which applies to every NWP and which relates to endangered and threatened species and critical habitat) and 33 CFR 330.4(f), results in "no effect" to listed species or critical habitat, because no activity that "may affect" listed species or critical habitat is authorized by NWP unless ESA Section 7 consultation with the U.S. Fish and Wildlife Service (USFWS) and/or National Marine Fisheries Service (NMFS) has been completed. Activities that do not comply with general condition 18 or other applicable general or regional conditions are not authorized by any NWP, and thus fall outside of the NWP Program. Unauthorized activities are subject to the prohibitions of Section 9 of the ESA. Each activity authorized by an NWP is subject to general condition 18, which states that "[n]o activity is authorized under any NWP which is likely to directly or indirectly jeopardize the continued existence of a threatened or endangered species or a species proposed for such designation, as identified under the Federal Endangered Species Act (ESA), or which will directly or indirectly destroy or adversely modify the critical habitat of such species." In addition, general condition 18 explicitly states that the NWP does not authorize "take" of threatened or endangered species, which will ensure that permittees do not mistake the NWP authorization as a Federal authorization to take threatened or endangered species. General condition 18 also requires a non-federal permittee to submit a pre-construction notification to the district engineer if any listed species or designated critical habitat might be affected or is in the vicinity of the project, or if the project is located in designated critical habitat. This general condition also states that, in such cases, non-federal permittees shall not begin work on the activity until notified by the district engineer that the requirements of the ESA have been satisfied and that the activity is authorized. Under the current Corps regulations (33 CFR 325.2(b)(5)), the district engineer must review all permit applications for potential impacts on threatened and endangered species or critical habitat. For the NWP program, this review occurs when the district engineer evaluates the pre-construction notification or request for verification. Nationwide permit general condition 18 requires a non-federal applicant to submit a pre-construction notification to the Corps if any listed species or designated critical habitat might be affected or is in the vicinity of the project, or if the project is located in designated critical habitat. Based on the evaluation of all available information, the district engineer will initiate consultation with the USFWS or NMFS, as appropriate, if he or she determines that the proposed activity may affect any threatened and endangered species or critical habitat. Consultation may occur during the NWP authorization process or the district engineer may exercise discretionary authority to require an individual permit for the proposed activity and initiate section 7 consultation during the individual permit process. If ESA Section 7 consultation is conducted during the NWP authorization process without the district engineer exercising discretionary authority, then the applicant will be notified that he or she cannot proceed with the proposed NWP activity until section 7 consultation is completed. If the district engineer determines that the proposed NWP activity will have no effect on any threatened or endangered species or critical habitat, then the district engineer will notify the applicant that he or she may proceed under the NWP authorization as long as the activity complies with all other applicable terms and conditions of the NWP, including applicable regional conditions. When the Corps makes a "no effect" determination, that determination is documented in the record for the NWP verification. In cases where the Corps makes a "may affect" determination, formal or informal section 7 consultation is conducted before the activity is authorized by NWP. A non-federal permit applicant cannot begin work until notified by the Corps that the proposed NWP activity will have "no effect" on listed species or critical habitat, or until ESA Section 7 consultation has been completed (see also 33 CFR 330.4(f)). Federal permittees are responsible for complying with ESA Section 7(a)(2) and should follow their own procedures for complying with those requirements (see 33 CFR 330.4(f)(1)). Therefore, permittees cannot rely on complying with the terms of an NWP without considering ESA-listed species and critical habitat, and they must comply with the NWP conditions to ensure that they do not violate the ESA. General condition 18 also states that district engineers may add activity-specific conditions to the NWPs to address ESA issues as a result of formal or informal consultation with the USFWS or NMFS. Each year, the Corps conducts thousands of ESA section 7 consultations with the FWS and NMFS for activities authorized by NWPs. These section 7 consultations are tracked in ORM2. During the period of March 19, 2012, to September 30, 2016, Corps districts conducted 1,402 formal consultations and 9,302 informal consultations for NWP activities under ESA section 7. During that time period, the Corps also used regional programmatic consultations for 9,829 NWP verifications to comply with ESA section 7. Therefore, each year NWP activities are covered by an average of more than 4,500 formal, informal, and programmatic ESA section 7 consultations with the FWS and/or NMFS. In a study on ESA section 7 consultations tracked by the USFWS, Malcom and Li (2015) found that during the period of 2008 to 2015, the Corps conducted the most formal and informal section 7 consultations, far exceeding the numbers of section 7 consultations conducted by other federal agencies. Section 7 consultations are often conducted on a case-by-case basis for activities proposed to be authorized by NWP that may affect listed species or critical habitat, in accordance with the USFWS's and NMFS's interagency regulations at 50 CFR part 402. Instead of activity-specific section 7 consultations, compliance with ESA may also be achieved through formal or informal regional programmatic consultations. Compliance with ESA Section 7 may also be facilitated through the adoption of NWP regional conditions. In some Corps districts SLOPES have been developed through consultation with the appropriate regional offices of the USFWS and NMFS to make the process of complying with section 7 more efficient. Corps districts have, in most cases, established informal or formal procedures with local offices of the USFWS and NMFS, through which the agencies share information regarding threatened and endangered species and their critical habitat. This information helps district engineers determine if a proposed NWP activity may affect listed species or their critical habitat and, when a "may affect" determination is made, initiate ESA section 7 consultation. Corps districts may utilize maps or databases that identify locations of populations of threatened and endangered species and their critical habitat. Where necessary, regional conditions are added to one or more NWPs to require pre-construction notification for NWP activities that occur in known locations of threatened and endangered species or critical habitat. For activities that require agency coordination during the pre-construction notification process, the USFWS and NMFS will review the proposed activities for potential impacts to threatened and endangered species and their critical habitat. Any information provided by local maps and databases and any comments
received during the pre-construction notification review process will be used by the district engineer to make a "no effect" or "may affect" determination for the pre-construction notification. Based on the safeguards discussed in this section, especially general condition 18 and the NWP regulations at 33 CFR 330.4(f), the Corps has determined that the activities authorized by this NWP will not jeopardize the continued existence of any listed threatened or endangered species or result in the destruction or adverse modification of designated critical habitat. Although the Corps continues to believe that these procedures ensure compliance with the ESA, the Corps has taken some steps to provide further assurance. Corps district offices meet with local representatives of the USFWS and NMFS to establish or modify existing procedures such as regional conditions, where necessary, to ensure that the Corps has the latest information regarding the existence and location of any threatened or endangered species or their critical habitat. Corps districts can also establish, through local procedures or other means, additional safeguards that ensure compliance with the ESA. Through ESA Section 7 formal or informal consultations, or through other coordination with the USFWS and NMFS, the Corps establishes procedures to ensure that the NWP is not likely to jeopardize any threatened and endangered species or result in the destruction or adverse modification of designated critical habitat. Such procedures may result in the development of regional conditions added to the NWP by the division engineer, or in conditions to be added to a specific NWP authorization by the district engineer. If informal section 7 consultation is conducted, and the USFWS and/or NMFS issues a written concurrence that the proposed activity may affect, but is not likely to adversely affect, listed species or designated critical habitat, the district engineer will add conditions (e.g., minimization measures) to the NWP authorization that are necessary to avoid the likelihood of adverse effects to listed species or designated critical habitat. If the USFWS and/or NMFS does not issue a written concurrence that the proposed NWP activity "may affect, but is not likely to adversely affect" listed species or critical habitat, the Corps will initiate formal section 7 consultation if it changes its determination to "may affect, likely to adversely affect." If formal section 7 consultation is conducted and a biological opinion is issued, the district engineer will add a condition to the NWP authorization to incorporate the appropriate elements of the incidental take statement of the biological opinion into the NWP authorization, if the biological opinion concludes that the activity is not likely to jeopardize the continued existence of listed species or adversely modify or destroy critical habitat. If the biological opinion concludes that the proposed activity is likely to jeopardize the continued existence of listed species or adversely modify or destroy critical habitat, the proposed activity cannot be authorized by NWP and the district engineer will instruct the applicant to apply for an individual permit. The incidental take statement includes reasonable and prudent measures such as mitigation, monitoring, and reporting requirements that minimize incidental take. The appropriate elements of the incidental take statement are dependent on those activities in the biological opinion over which the Corps has control and responsibility (i.e., the discharges of dredged or fill material into waters of the United States and/or structures or work in navigable waters and their direct and indirect effects on listed species or critical habitat). The appropriate elements of the incidental take statement are those reasonable and prudent measures that the Corps has the authority to enforce under its permitting authorities. Incorporation of the appropriate elements of the incidental take statement into the NWP authorization by a binding, enforceable permit condition provides an exemption from the take prohibitions in ESA Section 9 (see Section 7(o)(2) of the ESA). The Corps can modify this NWP at any time that it is deemed necessary to protect listed species or their critical habitat, either through: 1) national general conditions or national-level modifications, suspensions, or revocations of the NWPs; 2) regional conditions or regional modifications, suspensions, or revocations of NWPs; or 3) activity-specific permit conditions (modifications) or activity-specific suspensions or revocations of NWP authorizations. Therefore, although the Corps has issued the NWPs, the Corps can address any ESA issue, if one should arise. The NWP regulations also allow the Corps to suspend the use of some or all of the NWPs immediately, if necessary, while considering the need for permit conditions, modifications, or revocations. These procedures are provided at 33 CFR 330.5. #### 7.0 Determinations ### 7.1 Finding of No Significant Impact Based on the information in this document, the Corps has determined that the issuance of this NWP will not have a significant impact on the quality of the human environment. Therefore, the preparation of an Environmental Impact Statement is not required. ### 7.2 Public Interest Determination In accordance with the requirements of 33 CFR 320.4, the Corps has determined, based on the information in this document, that the issuance of this NWP is not contrary to the public interest. # 7.3 Section 176(c) of the Clean Air Act General Conformity Rule Review This NWP has been analyzed for conformity applicability pursuant to regulations implementing Section 176(c) of the Clean Air Act. It has been determined that the activities authorized by this permit will not exceed *de minimis* levels of direct emissions of a criteria pollutant or its precursors and are exempted by 40 CFR 93.153. Any later indirect emissions are generally not within the Corps continuing program responsibility and generally cannot be practicably controlled by the Corps. For these reasons, a conformity determination is not required for this NWP. FOR THE COMMANDER Dated: 21 Dec 2016 Major General, U.S. Army Deputy Commanding General for Civil and Emergency Operations #### 8.0 References Allan, J.D. 2004. Landscapes and Riverscapes: The Influence of Land Use on Stream Ecosystems. Annual Review of Ecology, Evolution, and Systematics. 35:257–284. Allan, J.D. and M.M. Castillo. 2007. Stream Ecology: Structure and Function of Running Waters, 2nd edition. Springer (The Netherlands). 436 pp. Beechie, T. J.S. Richardson, A.M. Gurnell, and J. Negishi. 2013. Watershed processes, human impacts, and process-based restoration. In, Stream and Watershed Restoration: A Guide to Restoring Riverine Processes and Habitats. Edited by P. Roni and T. Beechie. Wiley and Sons, Inc. (West Sussex, UK), pp. 11-49. Benstead, J.P. and D.S. Leigh. 2012. An expanded role for river networks. Nature Geoscience 5:678-679. Bodkin, D.B. 2012. The Moon in the Nautilus Shell: Discordant Harmonies Reconsidered from Climate Change to Species Extinction, How Life Persists in an Ever-Changing World. Oxford University Press (New York, New York). 424 pp. Booth, D.B., J.R. Karr, S. Schauman, C.P. Konrad, S.A. Morley, M.G. Larson, and S.J. Burges. 2004. Reviving urban streams: Land use, hydrology, biology, and human behavior. Journal of the American Water Resources Association. 40:1351-1364. Brooks, R.T. and E.A. Colburn. 2011. Extent and channel morphology of unmapped headwater stream segments of the Quabbin watershed, Massachusetts. Journal of the American Water Resources Association 47:158-168. Brown, T.C. and P. Froemke. 2012. Nationwide assessment of non-point source threats to water quality. Bioscience 62:136-146. Butman, D. and P.A. Raymond. 2011. Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geoscience 4:839–842. Carpenter, S.R., E.H. Stanley, and J.M. Vander Zanden. 2011. State of the world's freshwater ecosystems: Physical, chemical, and biological changes. Annu. Rev. Environ. Resources. 36:75-99. Council on Environmental Quality (CEQ). 1997. Considering cumulative effects under the National Environmental Policy Act. Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of Wetlands and Deepwater Habitats of the United States. U.S. Department of the Interior, Fish and Wildlife Service. FWS/OBS-79-31. 131 pp. Czech, B. and P.R. Krausman. 1997. Distribution and causation of species endangerment in the United States. Science 277:1116-1117. Dahl, T.E. 2011. Status and trends of wetlands in the conterminous United States 2004 to 2009. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC. 108 pp. Dahl, T.E. 1990. Wetlands losses in the United States 1780s to 1980s. U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C. 21 pp. Dahl, T.E. and C.E. Johnson. 1991. Status and Trends of Wetlands in the Conterminous United States, Mid-1970s to Mid-1980s. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC. 28 pp. Dale, V.H., S. Brown, R.A. Haeuber, N.T. Hobbs, N. Huntly, R.J. Naiman, W.E. Riebsame, M.G. Turner, and T.J. Valone. 2000. Ecological principles and guidelines for managing the use of land. Ecological Applications 10:639-670. Deegan, L.A., D.S. Johnson, R.S. Warren, B.J. Peterson, J.W. Fleeger, S. Fagherazzi, and W.M. Wollheim. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490:388-392. Dudgeon, D. A.H. Arthington, M.O. Gessner, Z.-I. Kawabata, D.J. Knowler, C. Lévêque, R.J. Naiman, A.-H. Prieur-Richard, D. Soto, M.L.J. Stiassny, and C.A. Sullivan. 2005. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81:163-182. Ellis, E.C., K.K. Goldewijk, S. Siebert, D. Lightman, and N. Ramankutty. 2010. Anthropogenic transformation of the biomes,
1700 to 2000. Global Ecology and Biogeography 19:589-606. Ellis, E.C. and N. Ramankutty. 2008. Putting people in the map: Anthropogenic biomes of the world. Frontiers in Ecology and the Environment 6:439-447. Elmore, A.J., J.P. Julian, S.M. Guinn, and M.C. Fitzpatrick. 2013. Potential stream density in mid-Atlantic watersheds. PLOS ONE 8:e74819 Federal Geographic Data Committee. 2013. Classification of wetlands and deepwater habitats of the United States. FGDC-STD-004-2013. Second Edition. Wetlands Subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service, Washington, DC. Fennessy, M.S., A.D. Jacobs, and M.E. Kentula. 2007. An evaluation of rapid methods for assessing the ecological condition of wetlands. Wetlands 27:543-560. Fischenich, J.C. 2006. Functional objectives for stream restoration. EMRRP Technical Notes Collection (ERDC TN-EMRRP-SR-52). Vicksburg, MS: U.S. Army Engineer Research and Development Center. 18 pp. Foley, J.A., R. DeFries, G.P. Asner, C. Barford, G. Bonan, S.R. Carpenter, F.S. Chapin, M.T. Coe, G.C. Daily, H.K. Gibbs, J.H. Helkowski, T. Holloway, E.A. Howard, C.J. Kucharik, C. Monfreda, J.A. Patz, I.C. Prentice, N. Ramankutty, and P.K. Snyder. 2005. Global consequences of land use. Science 309:570-574. Frayer, W.E., T.J. Monahan, D.C. Bowden, F.A. Graybill. 1983. Status and Trends of Wetlands and Deepwater Habitats in the Conterminous United States: 1950s to 1970s. Department of the Interior, U.S. Fish and Wildlife Service. Washington, DC. 32 pp. Gergel, S.E., M.G. Turner, J.R. Miller, J.M. Melack, and E.H. Stanley. 2002. Landscape indicators of human impacts to riverine systems. Aquatic Sciences 64:118-128. Gittman, R.K, F.J. Fodrie, A.M. Popowich, D.A. Keller, J.F. Bruno, C.A. Currin, C.H. Peterson, and M.F. Piehler. 2015. Engineering away our natural defenses: an analysis of shoreline hardening in the United States. Frontiers in Ecology and the Environment 13:301-307. Gosselink, J.G. and L.C. Lee. 1989. Cumulative impact assessment in bottomland hardwood forests. Wetlands 9:83-174. Hall, J.V., W.E. Frayer, and B.O. Wilen. 1994. Status of Alaska Wetlands. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC. 33 pp. Halpern, B.S., S. Walbridge, K.A. Selkoe, C.V. Kappel, F. Micheli, C. D'Agrosa, J.F. Bruno, K.S. Casey, C. Ebert, H.E. Fox, R. Fujita, D. Heinemann, H.S. Lenihan, E.M. P. Madin, M.T. Perry, E.R. Selig, M. Spalding, R. Steneck, and R. Watson. 2008. A global map of human impact on marine ecosystems. Science 319:948-952. Hansen, W.F. 2001. Identifying stream types and management implications. Forest Ecology and Management 143:39-46. Harris, L.D. and J.G. Gosselink. 1990. Cumulative impacts of bottomland hardwood forest conversion on hydrology, water quality, and terrestrial wildlife. In: Ecological Processes and Cumulative Impacts: Illustrated by Bottomland Hardwood Wetland Ecosystems. Ed. by J.G. Gosselink, L.C. Lee, and T.A. Muir. Lewis Publishers, Inc. (Chelsea, MI). pp. 260-322. Intergovernmental Panel on Climate Change (IPCC). 2014. Climate change 2014: synthesis report. Contributions of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPPC, Geneva, Switzerland, 151 pp. Julius, S.H., J.M. West, D. Nover, R. Hauser, D.S. Schimel, A.C. Janetos, M.K. Walsh, and P. Backlund. 2013. Climate change and U.S. natural resources: Advancing the nation's capacity to adapt. Ecological Society of America. Issues in Ecology, Report Number 18. 17 pp. Leopold, L.B., M.G. Wolman, and J.P. Miller. 1964. Fluvial Processes in Geomorphology. Dover Publications, Inc. (New York). 522 pp. Leopold, L.B. 1994. A View of the River. Harvard University Press (Cambridge). 298 pp. Leopold. L.B. 1968. Hydrology for urban land planning – A guidebook on the hydrologic effects of urban land use. Department of the Interior. U.S. Geological Survey. Geological Survey Circular 554. 18 pp. Luber, G., K. Knowlton, J. Balbus, H. Frumkin, M. Hayden, J. Hess, M. McGeehin, N. Sheats, L. Backer, C. B. Beard, K. L. Ebi, E. Maibach, R. S. Ostfeld, C. Wiedinmyer, E. Zielinski-Gutiérrez, and L. Ziska. 2014. Chapter 9: Human Health. Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, Terese (T.C.) Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program, 220-256. doi:10.7930/J0PN93H5. Malcom, J.W. and Y.-W. Li. 2015. Data contradict common perceptions about a controversial provision of the U.S. Endangered Species Act. Proceedings of the National Academy of Sciences (early edition). www.pnas.org/cg/doi/10.1073/pnas.1516938112 Meyer, J.L. and J.B. Wallace. 2001. Lost linkages and lotic ecology: rediscovering small streams. In Ecology: Achievement and Challenge. Ed. by M.C. Press, N.J. Huntly, and S. Levin. Blackwell Science (Cornwall, Great Britain). pp. 295-317. Millar, C.I. and L.B. Brubaker. 2006. Climate change and paleoecology: New contexts for restoration ecology. In: Foundations of Restoration Ecology, edited by D.A. Falk, M.A. Palmer, and J.B. Zedler. Island Press (Washington, DC). Chapter 15, pages 315-340. Millennium Ecosystem Assessment (MEA). 2005b. Ecosystems and Human Well-Being: Wetlands and Water Synthesis. World Resources Institute, Washington, DC. 68 pp. Millennium Ecosystem Assessment (MEA). 2005c. Ecosystems and human well-being: Biodiversity synthesis. World Resources Institute, Washington, DC. 86 pp. Millennium Ecosystem Assessment (MEA). 2005d. Ecosystems and Human Well-Being: Synthesis. Island Press, Washington, DC. 137 pp. Mitsch, W.J. and J.G. Gosselink. 2015. Wetlands. 5th edition. John Wiley and Sons, Inc. (Hoboken, New Jersey) 736 pp. Mitsch, W.J. and M.E. Hernandez. 2013. Landscape and climate change threats to wetlands of North and Central America. Aquatic Sciences 75:133-149. National Oceanic and Atmospheric Administration (NOAA). 2013. National Coastal Population Report: Population Trends from 1970 to 2020. NOAA State of the Coast Report Series. 22 pp. National Oceanic and Atmospheric Administration (NOAA). 1975. The Coastline of the United States. http://shoreline.noaa.gov/pdf/Coastline of the US 1975.pdf (accessed October 23, 2014). National Research Council (NRC). 1986. Ecological Knowledge and Environmental Problem-Solving: Concepts and Case-Studies. National Academy Press (Washington, DC). 388 pp. National Research Council (NRC). 1992. Restoration of Aquatic Ecosystems. National Academy Press (Washington, DC). 552 pp. National Research Council (NRC). 1994. Priorities for Coastal Ecosystem Science. National Academy Press (Washington, DC). 118 pp. National Research Council (NRC). 1995. Wetlands: Characteristics and Boundaries. National Academy Press (Washington, DC). 306 pp. National Research Council (NRC). 2001. Compensating for Wetland Losses Under the Clean Water Act. National Academy Press (Washington, DC). 322 pp. National Research Council (NRC). 2002. Riparian Areas: Functions and Strategies for Management National Academy Press (Washington, DC). 444 pp. Nickerson, C., R. Ebel, A. Borchers, and F. Carriazo. 2011. Major Uses of Land in the United States, 2007, EIB-89, U.S. Department of Agriculture, Economic Research Service, December 2011. Odum, W.E. 1982. Environmental degradation and the tyranny of small decisions. Bioscience. 32:728-729. Palmer, M.A., H.L. Menninger, and E. Bernhardt. 2010. River restoration, habitat heterogeneity, and biodiversity: a failure of theory or practice? Freshwater Biology 55:205-222. Paul, M.J. and J.L. Meyer. 2001. Streams in the urban landscape. Annual Review of Ecology and Systematics. 32:333-365. Peterson, C.H. and J. Lubchenco. 1997. Marine ecosystem services, in Nature's Services: Societal Dependence on Natural Ecosystems. Edited by G.C. Daily. Island Press (Washington, DC). pp. 177-194. Postel, S. and S. Carpenter. 1997. Freshwater ecosystem services, in Nature's Services: Societal Dependence on Natural Ecosystems. Edited by G.C. Daily. Island Press (Washington, DC). pp. 195-214. Reid, L.M. 1993. Research and cumulative watershed effects. U.S. Department of Agriculture, U.S. Forest Service General Technical Report PSW-GTR-141. 118 pp. Richter, B.D., D.P. Braun, M.A. Mendelson, and L.L. Master. 1997. Threats to imperiled freshwater fauna. Conservation Biology 11:1081-1093. Royal Society (RS) and the National Academy of Sciences (NAS). 2014. Climate change evidence and causes: An overview from the Royal Society and the U.S. National Academy of Sciences. 34 pp. Starzomski, B.M. 2013. Novel ecosystems and climate change. In: Novel Ecosystems: Intervening in the New Ecological World Order, First Edition. Edited by R.J. Hobbs, E.S. Higgs, and C.M. Hall. John Wiley and Sons, Ltd. (West Sussex, UK). pp. 88-101. Staudt, A. A.K. Leidner, J. Howard, K.A. Brauman, J.S. Dukes, L.J. Hansen, C. Paukert, J. Sabo, and L.A. Solórzano. 2013. The added complications of climate change: understanding biodiversity and ecosystems. Frontiers in Ecology and Environment 11:494-501. Steffen, W., P.J. Crutzen, and J.R. McNeill. 2007. The Anthropocene: Are humans overwhelming the forces of nature? Ambio 36:614-621 Tiner, R. 1997a. NWI maps: Basic information on the Nation's wetlands. Bioscience 47:269. Tiner, R. 1997b. NWI maps: What they tell us. National Wetlands Newsletter. 19:7-12. Tiner, R.W. 1999. Wetland Indicators: A Guide to Wetland Identification, Delineation, Classification, and Mapping. Lewis Publishers (Boca Raton, FL) 392 pp. U.S. Department of Agriculture. 2015. Summary Report: 2012 National Resources Inventory, Natural Resources Conservation Service, Washington, DC, and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa. http://www.nrcs.usda.gov/technical/nri/12summary (accessed January 21, 2016)
U.S. Environmental Protection Agency (U.S. EPA). 2015. National Summary of State Information. http://ofmpub.epa.gov/waters10/attains_index.control (accessed May 27, 2015). U.S. Environmental Protection Agency (U.S. EPA). 2016. National Wetland Condition Assessment 2011: A Collaborative Survey of the Nation's Wetlands. EPA-843-R-15-005. Office of Wetlands, Oceans, and Watersheds, Office of Research and Development (Washington, DC). 105 pp. Venter, O., N.N. Brodeur, L. Nemiroff, B. Belland, I.J. Dolinsek, and J.W.A. Grant. 2006. Threats to endangered species in Canada. Bioscience. 56:903-910. Vitousek, P.M., H.A. Mooney, J. Lubchenco, and J.M. Melillo. 1997. Human domination of the Earth's ecosystems. Science 277:494-499. Wright, T., J. Tomlinson, T. Schueler, K. Cappiella, A. Kitchell, and D. Hirschman. 2006. Direct and indirect impacts of urbanization on wetland quality. Wetlands and Watersheds Article #1. Center for Watershed Protection (Ellicott City, Maryland). 81 pp. Zedler, J.B. and S. Kercher. 2005. Wetland resources: Status, trends, ecosystem services, and restorability. Annual Review Environmental Resources. 30:39-74.