Results:
Tag: hydrology
Clear
  • Remembering a Memphis District hero, brother

    The Memphis District and Chasteen family recently lost a beloved member to a hard-fought battle with cancer. Darian Chasteen, who most recently held the Hydraulics and Hydrology Branch Deputy Chief title, passed away on May 7, 2021. While no longer physically with us, his legacy will forever live on. Chasteen served more than 30 years with the U.S. Army Corps of Engineers, Memphis District. During that time, he made many friends and touched numerous lives. In honor of his life and the contributions he made, we take a look back at his life, happy and thankful to have known such a person.
  • Channel Assessment Tools for Rapid Watershed Assessment

    Purpose: Existing Delta Headwaters Project (DHP) watershed stabilization studies are focused on restoration and stabilization of degraded stream systems. The original watershed studies formerly under the Demonstration Erosion Control (DEC) Project started in the mid 1980s. The watershed stabilization activities are continuing, and because of the vast number of degraded watersheds and limited amount of yearly funding, there is a need for developing a rapid watershed assessment approach to determine which watersheds to prioritize for further work. The goal of this project is to test the FluvialGeomorph (FG) toolkit to determine if the Rapid Geomorphic Assessment approach can identify channel stability trends in Campbell Creek and its main tributary. The FG toolkit (Haring et al. 2019; Haring et al. 2020) is a new rapid watershed assessment approach using high-resolution terrain data (Light Detection and Ranging [LiDAR]) to support U.S. Army Corps of Engineers (USACE) watershed planning. One of the principal goals of the USACE SMART (Specific Measureable Attainable Risk-Informed Timely) Planning is to leverage existing data and resources to complete studies. The FG approach uses existing LiDAR to rapidly assess either reach-specific analysis for smaller more focused studies or larger watersheds or ecosystems. The rapid assessment capability can reduce the time and cost of planning by using existing information to complete a preliminary watershed assessment and provide rapid results regarding where to focus more detailed study efforts.
  • Hydrology? District team provides professional water resources expertise, support

    Flowing through the U.S. Army Corps of Engineers, Omaha District’s area of responsibility, the Missouri River is the longest in the U.S. and its basin (watershed) covers more than 500 thousand square miles. The District’s hydrology section team plays a vital role in supporting this important civil works mission and helping to manage this precious natural resource.
  • Stormwater Management and Optimization Toolbox

    Abstract: As stormwater regulations for hydrologic and water quality control become increasingly stringent, Department of Defense (DoD) facilities are faced with the daunting task of complying with multiple laws and regulations. This often requires facilities to plan, design, and implement structural best management practices (BMPs) to capture, filter, and/or infiltrate runoff—requirements that can be complicated, contradictory, and difficult to plan. This project demonstrated the Stormwater Management Optimization Toolbox (SMOT), a spreadsheet-based tool that effectively analyzes and plans for compliance to the Energy Independence and Security Act (EISA) of 2007 pre-hydrologic conditions through BMP implementation, resulting in potential cost savings by reducing BMP sizes while simultaneously achieving compliance with multiple objectives. SMOT identifies the most cost-effective modeling method based on an installation’s local conditions (soils, rainfall patterns, drainage network, and regulatory requirements). The work first demonstrated that the Model Selection Tool (MST) recommendation accurately results in the minimum BMP cost for 45 facilities of widely varying climatic and regional conditions, and then demonstrated SMOT at two facilities.
  • ERDC researchers use numerical modeling to assist with hurricane preparations

    As a tropical system approaches the coastline and the intensity and impact of the storm becomes evident, officials and first responders brace for landfall by staging equipment and readying personnel for the aftermath. To assist in these efforts, researchers at the U.S. Army Engineer Research and Development Center (ERDC) are using numerical modeling systems to help U.S. Army Corps of Engineers (USACE) districts better prepare for storms.
  • PUBLICATION NOTICE: Utilizing Stream Flows to Forecast Dredging Requirements

    Abstract: In recent years, the United States Army Corps of Engineers (USACE) has spent an average of approximately a billion dollars annually for navigation channel maintenance dredging. To execute these funds effectively, USACE districts must determine which navigation channels are most in need of maintenance dredging each year. Traditionally, dredging volume estimates for Operations and Maintenance budget development are based on experiential knowledge and historic averages, with the effects of upstream, precipitation-driven streamflows considered via general-rule approximations. This study uses the Streamflow Prediction Tool, a hydrologic routing model driven by global weather forecast ensembles, and dredging records from the USACE Galveston District to explore relationships between precipitation-driven inland channel flow and subsequent dredged volumes in the downstream coastal channel reaches. Spatially based regression relationships are established between cumulative inland flows and dredged volumes. Results in the test cases of the Houston Ship Channel and the Sabine-Neches Waterway in Texas indicate useful correlations between the computed streamflow volumes and recorded dredged volumes. These relationships are stronger for channel reaches farther inland, upstream of the coastal processes that are not included in the precipitation-driven hydrologic model.
  • Lakeville resident selected for prestigious award

    ST. PAUL, Minn. – The U.S. Army Corps of Engineers Headquarters in Washington, D.C., recently selected Lakeville, Minnesota, resident and St. Paul District senior hydraulic engineer Ann Banitt as the recipient of its Hydrology, Hydraulics and Coastal Community of Practice Professional of the Year Award.
  • PUBLICATION NOTICE: Spatial Analysis of Precipitation and Snow Water Equivalent Extremes for the Columbia River Basin

    Abstract: Recent advances in the spatial statistics of extremes and model calibration were applied to develop and deliver areal-exceedance estimates for precipitation (PREC), by season and duration, and snow water equivalent (SWE), by cool season month and for the water year, for 758 delineated sub-basins of the Columbia River Basin (CRB), which correspond to a new CRB hydrology model watershed delineation. Understanding that future US Army Corps of Engineers, Northwestern Division, mission requirements may change, project execution also included the development and delivery of an application guidance document to credibly compute areal-exceedance estimates, including uncertainty, for PREC or SWE for any arbitrary area within the CRB. R, a free software environment for statistical computing and graphics (https://www.r-project.org/), and QGIS, a free and open source geographic information system (https://qgis.org/en/site/index.html), were the primary tools used for product development and delivery. The following R software packages were primarily used during project execution: evd, Glmnet, maps, raster, rgdal, SDMTools, sp, and SpatialExtremes.
  • PUBLICATION NOTICE: Rapid Watershed Assessment Tools Based on High-Resolution Terrain Data

    Abstract: The goal of this project was to develop rapid watershed assessment methods to estimate channel stability and sediment transport potential using high resolution terrain data (Light Detection and Ranging-LiDAR) to support US Army Corps of Engineers (USACE) watershed planning. This project developed a suite of tools based on advanced remote sensing technologies (LiDAR) that use off-the-shelf, high-resolution terrain data to rapidly assess watershed condition at the channel, floodplain, valley, and watershed scales. The widespread availability of high-resolution terrain data provides an opportunity to assess watershed conditions in great detail over large spatial extents. For this project, a channel assessment method was developed using a new LiDAR Hydraulic Geometry Relationships (HGR)-based approach for developing regional curves.
  • PUBLICATION NOTICE: Analysis of Snow Water Equivalent Annual Maxima in the Upper Connecticut River Basin Using a Max-Stable Spatial Process Model

    Abstract: Recent advances from the science of spatial extremes and model regularization were applied to develop areal-based extremes of snow water equivalent (SWE) data for the upper Connecticut River Basin. Development of areal-based SWE exceedance probability estimates are of relevance for cool season probabilistic flood hazard analyses (PFHA). The approach profiled in this case study is applicable for other hydrometeor-ological variables of relevance to PFHA. The methodology conforms with Extreme Value Theory (EVT) for the analysis of spatial extremes; hence, there is a firm theoretical basis for extrapolation. Trend surface development is guided by EVT theory and recent advances for regularizing general linear models. R, a free software environment for statistical computing and graphics, and QGIS, a free and open-source geographic information system, were the primary tools used for product development and delivery. The following R software packages were primarily used during project execution: evd, Glmnet, maps, raster, rgdal, SDMTools, sp, and SpatialExtremes. R software packages exist in the public domain and support PFHA analyses of varying complexities. Their application herein is not an endorsement or recommendation. It is recommended that one would need to evaluate any particular R software package regarding its suitability for use for any specific application.